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Abstract. Thermal ablation is an increasingly utilized treatment modal-
ity for both secondary and primary hepatic tumors. However, it presents
significant challenges in treatment planning, particularly when employing
multiple applicators. Numerical methods for evaluating the effectiveness
of an ablation procedure plan can assist in this task, but they are often
computationally intensive or too simplistic, making them impractical for
interaction or fast optimization loops in automatic planning. This paper
introduces Chained Neural Cellular Automata (C-NCA), a deep learning
approach that allows to quickly estimate cell death in thermal ablation
procedures. The C-NCA model is trained on a dataset generated by a
numerical simulation. When compared to existing methods, the C-NCA
achieves comparable accuracy with substantially reduced computation
time, thereby making it suitable for interactive planning, instant visu-
alisation, fast automatic planning or even real-time surgical replanning,
and potentially enhancing clinical workflows.

Keywords: Simulation · Planning · Thermal ablation · Percutaneous
therapy · Deep learning.

1 Introduction

Percutaneous thermal ablation (PTA) is increasingly popular for treating hep-
atic tumors due to its reduced treatment times and minimal patient trauma
[4], and comparable outcomes to surgery for certain indications. However, plan-
ning this procedure can be challenging and time-consuming, particularly when
multiple applicators are involved, imposing a significant cognitive load on prac-
titioners. This includes sequential use, as observed in RadioFrequency (RF) or
MicroWave (MW) Ablation [11], or simultaneous use, as in cryoablation [6]. Nu-
merical methods based on Pennes’ bioheat equation [16] have been proposed to
estimate ablation areas considering factors such as blood perfusion and the heat
sink effect, with calculation times typically ranging in minutes [2,8]. Despite
their utility, these numerical methods are not well-suited for optimization loops
or interactive planning due to their long computation times.

Approximation methods offer faster estimations but at the cost of preci-
sion, particularly when accounting for the heat sink effect. These methods have
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demonstrated a Dice coefficient of 0.88 compared to numerical methods [18].
More recently, deep convolutional neural networks, informed by both physics
and patient data, have been proposed. They outperform numerical simulations
in terms of calculation time, achieving a Dice coefficient of 0.93 for the esti-
mation of thermal propagation with fixed parameters in 0.06 s (16.7 Hz) [12].
A key limitation is the need for retraining when procedural parameters change,
such as number of applicators and duration of ablation procedures, hindering the
adaptability required for clinical deployment. A robust model capable of rapidly
and accurately estimating ablation across varying conditions without retraining
would improve procedural planning.

To address this challenge, we propose a physics and patient-informed deep
learning method based on Neural Cellular Automata (NCA). NCAs build upon
the concept of Cellular Automata (CA) [14] and extend them by integrating
neural networks to learn the update rules. They have been successfully applied
to reconstruct complex 2D patterns from a seed state, such as dynamic emoji
and image reconstruction [13,19]. Recent advancements have extended NCAs to
3D applications, demonstrating their efficiency in multi-dimensional task solv-
ing, including generating high-fidelity 3D shapes [22] and regenerating damaged
morphologies [10,21]. In our context, NCAs promise to be a powerful tool thanks
to their ability to model local interactions among units of space, which is cru-
cial in thermal ablation where the heat distribution and its effects are highly
localized. The integration of neural networks enables NCAs to learn complex,
non-linear relationships between thermal dosage and tissue response, allowing
the model to generalize well to different scenarios and tissue types. Additionally,
NCAs can effectively model both spatial and temporal dynamics, which are es-
sential in thermal ablation where the heat distribution changes over time. This
adaptive capability, combined with scalability, robustness to variability in initial
conditions and environmental factors, and speed, makes NCAs a powerful tool
for estimating cell death and model the dynamics in a fast and accurate way.

This paper introduces C-NCA, a new architecture based on chained NCAs,
and applies it to thermal-induced tissue death estimation. It incorporates multi-
ple NCA update cycles to estimate heat propagation and vessel heat sink effect,
outputting the final cell death estimation using patient-specific spatial tissue
properties. Our contributions include:

1. Pioneering the use of Neural Cellular Automata for estimating heat propa-
gation in thermal ablation.

2. Developing the C-NCA approach, which enhances the NCA by replacing
operators with multiple NCA updates.

3. Creating a versatile model that supports any number and configuration of
applicators, as well as any ablation duration, without the need for retraining.

4. Validating the model on a dataset derived from real-world patients, incor-
porating comprehensive physical properties.

5. Demonstrating superiority over state-of-the-art in terms of accuracy, robust-
ness, speed, and versatility, making it ideal for interactive planning and op-
timization.

6. Full dataset available at https://figshare.com/s/a4d1e9a9ededdcdeef39

https://figshare.com/s/a4d1e9a9ededdcdeef39
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2 Methods

2.1 General architecture

We introduce a novel approach, named Chained Neural Cellular Automata (or
C-NCA) that diverges from conventional NCA pipelines [13,19,21] by eliminat-
ing Sobel filtering, stochastic updates, and life masking. Sobel filtering and life
masking were eliminated, as these tasks can be learned by the model using the
chained NCA update steps. Stochastic updates were removed due to a lack of
evidence of their benefit [3]. This elegant simplification makes C-NCA compu-
tationally more efficient while retaining the same expressiveness.

The proposed C-NCA pipeline is summarized in Fig.1. It receives as input a
voxel grid of any arbitrary size, that constitutes the initial state 2○. Each voxel
of the grid 1○ comprises five distinct channels representing tissue survivability,
ablation duration encoded into the voxels of the applicator, perfusion rate, den-
sity ρ, and specific heat capacity c. To mitigate numerical discrepancies, each
range of values was normalized to the interval [0, 1] through min-max scaling
x′ = (x−min(x))/(max(x)−min(x)), where the maximal and minimal values
are based on theoretical limits for each channel.

The pipeline operates iteratively, where an initial seed state is progressively
refined in an NCA upade process 3○ that consists of NC iterations of NS chained
NCA update steps 4○. Each NCA update step 5○ consists of a neural network
composed of two 3D convolutional layers, with a ReLU activation in between.
Both convolutional layers employ 3×3×3 kernels with a padding of 1. The first
convolution expands the feature representation by a factor of three, while the
second convolution compresses these back to the original five-channel format,
ensuring continuity in feature propagation.

In each NCA update step, the neural network takes the previous state as
input and adds it into the output 6○ to generate the next state. This iterative
process allows the solution to “grow” with each iteration, gradually refining the
predicted thermal damage. Each update passes its output as input to the sub-
sequent NCA update step, facilitating a structured and hierarchical refinement
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Fig. 1: General architecture of the main C-NCA pipeline
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of predictions. The optimal number of iterations NC is discussed in Section 3.3.
Upon completion of the NCA update process, the first channel representing tis-
sue death is clamped 7○ to the [0, 1] interval to enforce the theoretical range in
the final state 8○.

2.2 Synthetic dataset generation

To train our model, we generated a dataset using conventional numerical simu-
lations to teach our model thermal propagation and tissue response during ab-
lation procedures. The numerical simulations were based on the Pennes bioheat
equation [16] to solve the following diffusion equation:

ρmatcmat
∆T

∆t
= ∇(d∇T ) +Qbio +Qext (1)

with T as the temperature, ∆t the timestep set to 0.025 seconds to satisfy a
stability criterion detailed in [8], ∇(d∇T ) the heterogeneous heat conduction
term, Qbio the biological heat source, and Qext the external heat source. Terms
ρmat and cmat are the material’s density and specific heat capacity. The biological
heat Qbio = ωbρbcb(Tb−T )+Qmet includes ωb the blood perfusion rate, ρb blood
density, cb blood specific heat capacity, Tb local and average blood temperature,
and Qmet metabolic heat production. The equation models heat exchange in
tissue due to blood perfusion and metabolism. In organs like the liver, blood
vessels act as a heat sink, affecting ablation.

To quantify heat deposition resulting from energy transfer by external sources,
we used Equation 2 found in Hall et al. [9], which models RF or MW ablation:

Qext =
1

2
σmat

I∑
i=1

|∇Vi|2 (2)

where Vi is the electrical potential of antenna i out of I antennas, and σmat

is electrical conductivity. For the computation of Vi, readers are referred to
the work by A. M. Qadri [17]. All physical properties were sourced from IT’IS
Database for Thermal and Electromagnetic Parameters of Biological Tissues [1].

The heat propagation simulation is paired with a three-state cell death model
proposed by O’Neill et al. [15] to assess tissue states (alive, damaged, or dead).
In this model, cell death is computed based on the thermal dose received by
the tissue, which is a function of both temperature and exposure time. The
approach defines thresholds for transitioning between the alive, damaged, and
dead states. Damage accumulated by cells over time, as they are exposed to
elevated temperatures, is then used to determine the final state of the tissue.

A GPU-based Finite Difference (FD) method inspired by [8] was used for
computational efficiency. It discretizes space into isotropic voxels where heat
transfer is calculated for thermal conductivity in the x, y, and z directions. To
determine the regions of interest (ROI) for the simulations, bounding boxes are
created for each applicator’s emission zone and expanded by a 50 mm margin in
every direction [5].



C-NCA : Chained Neural Cellular Automata 5

3 Experimental validation

3.1 Dataset

A dataset of 3500 synthetic multi-channel and multi-resolution patient volumes
with antennas was generated. The dataset includes 25 tumors in 7 anatomies ex-
tracted from the 3D-IRCADb-01 database [20], which contains 3D CT scans of
patients with hepatic tumors, as well as segmentations of the anatomical struc-
tures. Among the 25 tumors, 12 were natively present in the 7 chosen anatomies.
The 13 additional tumors were extracted from other patients and slightly modi-
fied (scaled, rotated, translated), then added near vessels at an average distance
of 3.6±0.6 mm, to assess the heat sink effect on ablation volumes. Average tu-
mor volume was 1421±145 mm³, reflecting typical tumors treated using thermal
ablation [7]. Each combination of patient/tumor was treated as a separate case.

For training, we used 20 cases in 5 anatomies and ran 125 simulations per
case. For each simulation, an equiprobable allocation of 1 to 3 non-overlapping
applicators of identical geometry was generated, randomly placed at a maximum
distance of 40 mm from a tumor, respecting a minimal distance of 10 mm between
applicator tips, and randomly oriented within the patient’s liver to encompass
all possible configurations of applicator placements, for a total of 2500 generated
volumes. Similarly, for testing, we used the same 20 cases and ran 25 simulations
per case with 1-5 generated applicators, for a total of 500 volumes. For validation,
we used the 5 remaining cases in the 2 anatomies unseen during training/testing,
ran 100 simulations per case with 1-5 generated applicators, for a total of 500
volumes. Testing and validation have been performed using more applicators
than training, to evaluate the ability of C-NCA to extrapolate multi-applicator
ablations with a higher needle count.

Numerical simulations of thermal propagation and cell states were computed
using a state-of-the-art finite difference method (FDM) and a validated cell death
model. Synchronous ablations of 300 seconds were applied per applicator. The
resulting volumes were subsequently downsampled from an initial isotropic voxel
discretization of 2 mm to 3 mm and 4 mm resolutions.

Our simulations used the segmented organs from the database (liver, arter-
ies and veins, tumors), as masks with different tissue properties (density, heat
capacity, thermal and electrical conductivity) in the initial state.

3.2 Training and Evaluation

During the training phase, 2500 instances from the dataset depicted in Section
3.1 were utilized. The tissue death channel was established as the target, while
the other channels were used to construct the seed state. The generated seed,
with cell death channel set to zeros, was used as the input. A further 500 addi-
tional instances were reserved for validation and early stopping protocols.
Data Augmentation. In this study, 90◦ increment volume rotation and axial
flipping were implemented as the main data augmentation modalities.
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Data Reinjection. Substituting 12.5% of the current batch with output states
from a previous batch that exhibited the highest loss, thereby enabling contin-
ued estimation, facilitated further training without excessive memory allocation
for gradient computation. This approach has shown to enhance model robust-
ness and prevent divergence across iterations, while additionally concentrating
training efforts on more challenging cases [13].
Loss Function. A modified mean squared error (MSE) loss was used to reduce
the penalization of tissue death predictions exceeding 100% or falling below 0%,
as these values are clamped in the pipeline. Strong penalization of these out-
of-bounds values would impede learning without affecting final predictions. A
scaling factor of 0.1 was applied to out-of-range predictions, allowing the model
to explore boundary conditions without disproportionate punishment. This loss
function was applied before final clamping and only to the first channel, leaving
other channels to the model’s discretion.
Solution Convergence and Persistence. In order to facilitate the conver-
gence of the model towards a solution and ensure its stability in subsequent
iterations, the model was trained across a spectrum of random iteration counts
for the chained NCA steps, ranging from 7 to 75. This methodological approach
guarantees the model’s adaptability by preventing specific training towards any
predetermined set of update cycle iterations, thereby enhancing its generalizabil-
ity [13]. This strategy proved particularly beneficial in identifying the optimal
range of update iterations as discussed in Section 3.3.
Training Completion. In order to estimate the completion of training and
facilitate efficient early stopping, the mean loss between consecutive epochs was
evaluated. Detection of a plateau or an increment in the mean loss would initiate
the termination of the training process.

We trained three networks specialized in 2 mm, 3 mm and 4 mm resolutions
without architecture change across 2500 volumes as detailed in Section 3.1. Power
was set to 50 W to simulate RF, with each case involving 1 to 5 sequential
ablations. Within the same volume, each applicator was active for 300 s, for
total simulation times ranging from 300 s to 1500 s of asynchronous heating. The
metrics assessed included the total computation time required to generate results
and the deduced frames per second (fps) to evaluate the responsiveness of result
generation, and the root-mean-square error (RMSE) between the synthetic truth
at a resolution of 2 mm (reference) and the model’s output, which was utilized
to evaluate each model’s fidelity to the synthetic truth.

3.3 Results and Analysis

The training and evaluation were performed on a Core-i9 desktop computer with
32.0 GiB RAM and a GeForce RTX™ 4080 SUPER with 10,240 CUDA cores.

Table 1 summarizes the obtained results. It can be observed that the C-
NCA method was able to accurately reproduce the RFA simulations, with low
average RMSE, ranging from 1.43% for the 2mm resolution to 1.74% for the 4
mm resolution (Fig.2b). Visually, the results look very similar, as illustrated on
Fig.3, which is consistent with the numerical results.
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Table 1: Benchmark results of FDM and C-NCA on the test set
Method Resolution Avg. time (STD) fps Avg. RMSE (STD)

- mm s s Hz % %
FDM 2 0.10 0.0514 10 - -

3 0.04 0.0174 25 1.63% 0.38%
4 0.03 0.0101 33 1.88% 0.43%

C-NCA 2 0.0037 0.0014 270 1.43% 0.76%
3 0.0029 0.0011 345 1.79% 0.97%
4 0.0021 0.0009 476 1.74% 0.77%
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Fig. 2: (a) RMSE (%) depending on number of applicators for a resolution of 4
mm; (b) RMSE (%) and (c) frequency (fps) depending on voxel resolution (mm)

The computation times were significantly lower using C-NCA than FDM
(see Fig.2c). The fastest approach in the literature [12] could simulate 7 min of
heating from a single applicator in 0.06 seconds at a resolution of 4 mm (≈16
fps), while our approach reaches 0.0021 seconds (476 fps) for the same resolution
with up to 5 applicators and a total of 25 min. The highest resolution of 2 mm
provides an average frame rate exceeding 250 fps, ensuring smooth interaction
with seamless visual updates. Training a model at an even higher 1 mm resolution
would require more computational power than what was available for this study.

We experimented three variants of the update process, respectively with a
number NS ∈ {1, 2, 3} of NCA update steps. NC was adjusted so that NC ×NS

stays constant, to enable fair comparison of performance under equal computa-
tional budgets, leaving broader architectural exploration for future work.

The findings indicate that the model with three chained NCA update steps
surpassed the performance of the others with a resulting RMSE value of 1.74%
on the test dataset, against 9.16% for the one-step, and 2.02% for the two-steps
model (results for the 4mm trained models). Further research would be needed
to assess whether increasing the number of chained NCA updates could yield
any additional improvements in performance.
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Target                              Output Target                              Output

Target                              Output Target                              Output

Fig. 3: 2D slices of target (FDM, 2mm) and output (C-NCA, 2mm) on 4 different
tumors: tissue death (red), vessels (blue) and ablation applicator (yellow)

To identify the optimal number of iterations NC , the C-NCA model was ex-
ecuted on the test dataset with 100 iterations and the result after each update
cycle was extracted for evaluation. Evaluation of the minimum RMSE across
outputs revealed that the optimal number of iterations varied with spatial reso-
lution: 27 iterations for 2 mm, 20 for 3 mm, and 13 iterations for 4 mm. These
optimized iteration counts were subsequently employed throughout all experi-
ments to ensure consistent and effective performance.

The model’s adaptability to multi-applicator ablation was assessed through
the RMSE score for the 2 mm C-NCA with 1 to 5 applicators. The results indi-
cated a consistent RMSE score across different numbers of applicators (Fig. 2a),
demonstrating that this architecture can accurately predict outcomes for multi-
ablation and multi-duration procedures, maintaining consistent quality even with
more applicators than it was trained on. Moreover, we observed that perfusion
layers with high blood flow grow outwards, nicely capturing heat sink effects.

4 Conclusion and Future Work

We introduced an approach to estimate the heat induced tissue death in PTA
based on a chained NCA architecture. While not directly producing a heat map,
it accurately estimates cell death induced by thermal damage by implicitly mod-
eling temperature field effects and evolution, going beyond heat distribution,
with low RMSE and high speed. The model is computationally efficient, char-
acterized by a mere 12,210 learned parameters, and is capable of operating on
a standard desktop computer due to its implementation through basic 3D con-
volutions. It can compute 25 minutes of treatment at a frequency up to 476 fps,
making it suitable for interactive simulations and optimization loops.
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While our current model assumes a static environment, the C-NCA architec-
ture has the capacity to model dynamic settings, such as model temperature-
dependent tissue properties and fluid dynamics, with appropriate training data.
The method has been tested with RF ablation parameters but could also be
adapted to other thermal ablation modalities. Future research could include
training a generic C-NCA model to dynamically estimate ablation-induced tis-
sue death at various energy levels and applicator models by adding channels to
encode these parameters. This research is intended for integration into interac-
tive planning software and automated planning tools. Though based on synthetic
data, our evaluation uses a robust pipeline with state-of-the-art FDM and a val-
idated cell death model, providing a solid foundation for clinical translation.
Finally, although C-NCA have been conceived with our context and application
in mind, we believe it is generic enough to be used in many other fields.
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