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Abstract. Accurate segmentation of lumbar vertebral endplates is es-
sential for assessing bone density and biomechanical properties in spinal
disorders. While quantitative computed tomography (QCT) provides de-
tailed bone density measurements, existing segmentation approaches pri-
marily focus on vertebral bodies and intervertebral discs, often neglect-
ing the precise delineation of endplates. Current deep learning methods
perform well in healthy spines but struggle with pathological cases due
to the thin and morphologically complex nature of endplates, particu-
larly in the presence of osteophytes and degenerative changes. To ad-
dress these challenges, we introduce the first publicly available dataset,
Endplate3D-QCT, which contains pixel-level annotations of lumbar end-
plates in clinical QCT scans. Our dataset includes high-precision 3D
segmentation masks targeting cortical endplates and subchondral bone,
along with an automated evaluation framework for model assessment.
We benchmark multiple deep learning models, including EfficientUNet,
UNet, VNet, UNETR and SwinUNETR, using nnUNet as the train-
ing framework. While these models achieve Dice scores around 0.9, they
exhibit inconsistencies in endplate identification, leading to false posi-
tives and false negatives. These findings highlight the need for further
advancements in endplate segmentation techniques. Our dataset and
benchmarks provide a valuable foundation for improving spinal implant
design, bone density mapping, and computational modeling of vertebral
load distribution. The dataset and the evaluation code are available at
https://github.com/yin876705249/Endplate3D-QCT.
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1 Introduction

Accurate segmentation of lumbar vertebral endplates is critical for quantitative
assessment of bone density and biomechanical characterization in spinal dis-
orders. While quantitative computed tomography (QCT) enables density mea-
surements of trabecular and cortical bone, existing segmentation methods for
spinal structures—typically focusing on intervertebral discs and vertebral bod-
ies—fail to achieve the precision required for endplate-specific analysis. Current
deep learning approaches often yield satisfactory results in healthy spines with
minimal osteophytes but struggle to delineate the thin (<4 mm), anatomically
ambiguous endplate regions in pathological cases. This limitation stems from two
key factors: 1) the reliance on threshold-based 2D methods that inadequately
capture 3D morphological variations of the endplate’s cortical bone layer, and
2) the lack of high-resolution CT datasets with expert annotations specifically
targeting the osseous endplate-cartilage interface.

The clinical imperative of endplate segmentation lies in its direct relevance
to spinal surgery outcomes. During procedures like interbody fusion, where im-
plants contact the endplate surface, local bone density measurements could guide
personalized device selection and 3D-printed cage design—critical for preventing
subsidence in osteoporotic patients. Furthermore, precise endplate characteriza-
tion could advance research on asymmetric bone remodeling in scoliosis and
degenerative disc disease. While MRI excels at visualizing soft tissues like discs
and neural structures [3], CT remains the modality of choice for osseous endplate
analysis due to superior spatial resolution and contrast for cortical bone.

Despite these applications, no publicly available dataset currently provides
detailed 3D annotations of lumbar endplates. Existing spinal CT segmentation
works [12, 10| predominantly focus on vertebral bodies and discs, often treating
the endplate as a byproduct of post-processing rather than a distinct anatomical
entity. This gap hinders the development of machine learning models capable of
capturing the endplate’s subtle radiological signatures, particularly in degener-
ative spines where pathological changes obscure traditional intensity-based seg-
mentation boundaries.

To address these challenges, we present the first open-access dataset with
pixel-level annotations of lumbar endplates in clinical QCT scans. Our contri-
butions include: 1) High-precision 3D segmentation masks delineating cortical
endplates and subchondral bone regions. 2) An automated evaluation framework
for precise assessment of segmentation model performance. 3) Comprehensive
benchmarking experiments comparing widely-used segmentation methods.

This resource aims to accelerate research in personalized spinal implant de-
sign, bone density mapping, and computational modeling of load distribution
across the vertebral column. We conducted benchmark experiments based on
nnUNet [6, 7], a state-of-the-art framework in the medical image segmentation
domain. We evaluated the performance of widely used segmentation methods,
including UNet [11], VNet [9], and SwinUNETR [4], etc. The results indicate
that while these methods achieve high segmentation performance (with Dice
scores around 0.9), they do not consistently ensure the accurate identification
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of all endplates, leading to instances of false negatives and false positives. This
suggests that endplate segmentation remains a challenging task that requires
further exploration.

2 Dataset Construction

2.1 Data Acquisition

Our study utilized 119 CT volumes from the CTSpinelK dataset [2] containing
complete lumbar regions, which were carefully selected based on image qual-
ity and anatomical completeness. After extracting volumetric regions of interest
(ROIs) centered on the lumbar spine, we performed pixel-level 3D annotations
of vertebral endplates following clinical guidelines, including superior /inferior
endplates from L1 to L5 and the superior endplate of S1. This resulted in 1,309
annotated endplate surfaces (11 per case) with sub-millimeter precision, ad-
dressing the critical gap in publicly available endplate segmentation data. To
our knowledge, this represents the first open-access dataset providing large-scale
(over 1,000 annotated surfaces), high-quality 3D annotations of lumbar end-
plates, particularly valuable for developing Al-assisted surgical planning systems
and biomechanical modeling in spinal disorders.

In addition to the re-annotated CTSpine-Refined dataset, we collected an-
other 51 patients’ preoperative lumbar CT images in this study. These patients
were clinically diagnosed as lumbar degenerative diseases and underwent lumbar
fusion surgery. The scanning parameters of CT were set at the values of 120 kVp.
The patients group included 23 males and 28 females, and their average age was
66.2 £+ 5.3 years, ranging from 51 to 76 years. Concretely, we constructed two
datasets from these 51 clinical cases (10 with scoliosis) of lumbar degenerative
diseases (LDD) reflecting different levels of segmentation difficulty:

1. LDD-Mild includes 25 cases with mild symptoms and regular endplates,
representing a relatively low level of segmentation complexity.

2. LDD-Severe includes 26 cases with severe symptoms and irregular endplates,
posing significant challenges for segmentation models. These datasets serve
to test model robustness across a spectrum of anatomical variations.

In this study, the cortical bone of upper and lower lumbar endplates from L1
to L5 together with S1 upper endplates were segmented on lumbar CT images.
The segmentation process was performed in the sagittal plane of CT images slice
by slice to annotate the whole endplate, as shown in Fig. 1. Five spine surgeons
participated in the CT image annotation. Four surgeons with over 5 years of
clinical experience performed the initial segmentation. All received standardized
training and strictly followed the annotation manual to minimize bias. Using
cross-annotation and iterative feedback, the team held multiple discussions to
resolve inconsistencies. Additionally, a spine surgeon with more than 10 years of
experience reexamined all annotated images, further ensuring quality. Detailed
information of our Endplate3D-QCT can be found in Table 1. Our dataset con-
sists of a total of 170 scans, with each scan containing instance segmentation
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annotations for 11 endplates. In other words, we provide a total of 1,870 an-
notated endplate instances, making this the largest publicly available endplate
segmentation dataset to date.

Table 1. Summary statistics of the Endplate3D-QCT dataset. BMD (mg/cm?®): Bone
Mineral Density measured in endplate region.

Metric | CTSpine-Refined LDD-Mild ~ LDD-Severe Overall
Image Count 119 25 26 170
Avg Image Size (190, 188, 295) (204, 209, 305) (199, 202, 295) .
Spacing (mm) (0.8,0.8,0.8) (0.4, 0.4, 0.75) (0.39 0.39 0.74) -
L1 endplate count 238 50 52 340
L1 endplate BMD 129.8 + 6.8 128.8 £ 7.9 130.1 £ 7.0 129.7 £ 7.0
L2 endplate Count 238 50 52 340
L2 endplate BMD 129.0 &+ 6.4 127.8 £ 7.2 129.9 + 6.5 129.0 £+ 6.6
L3 endplate Count 238 50 52 340
L3 endplate BMD 129.0 £ 5.9 127.6 + 6.8 129.2 + 5.7 128.8 + 6.1
L4 endplate Count 238 50 52 340
L4 endplate BMD 128.9 £ 5.3 1277 £ 5.8 128.4 + 4.9 128.6 + 5.3
L5 endplate Count 238 50 52 340
L5 endplate BMD 128.5 £ 6.1 128.3 + 5.0 129.0 + 4.3 128.6 + 5.7
S1 endplate Count 119 25 26 170
S1 endplate BMD 128.4 4+ 6.2 126.8 + 4.7 127.8 + 4.7 128.0 £ 7.3

2.2 Evaluation Protocol

Our automated evaluation framework employs multi-instance morphological anal-
ysis with clinical interpretability, formalized through the following mathematical
constructs.

Volumetric Metrics Given a predicted segmentation mask P and ground truth
G in 3D space 2 C Z3, we define:

|P NG

UG €[0,1) (1)

2[PNG

For surface distance metrics, let Sp and Sg denote the lumber endplate
surfaces with point sets {p;} and {g,}, respectively:

€10,1, JI(P,G)=

~—

HDgs5 (P, G) = max {95th d(p,Sc), 95th d(g, Sp)} (2
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CTSpine-Refined LDD-Mild LDD-Severe

Fig. 1. Visualization of Endplate3D-QCT. The images in CTSpine-Refined were ac-
quired from healthy individuals, with the alignment between vertebral bodies better
conforming to the natural curvature of the human spine. In contrast, LDD-Mild exhibits
a certain degree of degeneration, with some vertebrae showing signs of deformation.
LDD-Severe represents more advanced degeneration, where some endplates have even
undergone deterioration.

ISp| [re]
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Instance Matching For multi-instance endplate detection, define the optimal
assignment matrix A € {0, 1}*¥ where M predicted instances and N ground
truth instances:

A= 1, if argmax, DSC(P;,Gy) = j and DSC(P;, G;) > 0.8 )
A 0, otherwise

Precision, recall and F1 are then computed as:

M N
Zi:l Zj:l Ay
M )

Precision = Recall =

(®)
and F1 is obtained through: F1 = 2 x (Precision x Recall)/(Precision + Recall).

N M
23:1 Zi:l Ay
N

3 Experiments

3.1 Implementation Details

We conducted experiments based on nnUNet, state-of-the-art training frame-
work, and evaluate five widely-used methods, including UNet [11], VNet [9],
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Image GT EfficientUNet UNet (2D) UNETR SwinUNETR  UNet (3D) VNet

Fig. 2. Visualization of segmentation results. The first row presents a sample from
CTSpine-Refined, where the models generally exhibit missed detections on the S1 end-
plate. The second row corresponds to LDD-Mild; due to the higher data resolution,
the models generally achieve better performance. The third row shows examples from
LDD-Severe, where severe endplate degeneration leads to poor model performance,
particularly for EfficientNet and UNet (2D).

UNETR [5], SwinUNETR [4] and EfficientUNet [1]. All models were trained us-
ing Adam optimizer [8] with initial learning rate 3e-4 and cosine decay schedule.
We implemented a hybrid loss function combining dice loss and cross entropy
loss. For 3D methods, we used patch-based training and test-time sliding window
inference. Data augmentation included random cropping, rotation, and scaling.
Detailed implementation of each segmentation methods is shown in Table. 2. We
performed three-fold cross-validation on the CTSpine-Refined subset and used
an ensemble of the three models to make inferences on the other two subsets.

When evaluating each subset, we first calculate the instance-level Precision,
Recall, and F1-score for endplates using Eq.5, which we refer to as the "Detec-
tion" metrics. Second, we compute the overall segmentation performance using
Eq.1, which we define as the "Segmentation" metrics. Finally, we assess the seg-
mentation performance for each individual endplate instance, including Dice,
Jaccard, HD95, and ASD, which we categorize as the "Instance Segmentation"
metrics.

3.2 Dataset-Centric Performance Analysis

Our experimental evaluation focuses on revealing how dataset characteristics in-
fluence segmentation performance across different anatomical presentations. We
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Table 2. Implementation details of each method.

Model Parameters (M) Input Size FLOPs (GFLOPs)
Efficient UNet [1] 10.05 (288, 288) 3.20
UNet (2D) [11] 18.67 (288, 288) 19.78
UNETR [5] 121.51 (320, 96, 96) 213.28
SwinUNETR |[4] 15.7 (224, 96, 96) 184.01
UNet (3D) [11] 31.19 (320, 96, 96) 749.42
VNet [9] 9.46 (320, 96, 96) 178.85

Table 3. Performance comparison on CTSpine-Refined subset of our Endplate3D-
QCT. The units of HD95 and ASD are millimeters (mm).

Detection Segmentation Instance Segmentation
Precision Recall F1 Dice Jaccard Dice Jaccard HD95 ASD

EfficientUNet  0.904  0.909 0.906 0.867 0.766 0.878 0.785 1.007 0.258
UNet(2D) 0.945 0.942 0.943 0.885 0.795 0.891 0.804 1.003 0.225

UNETR 0.923  0.926 0.925 0.878 0.784 0.888 0.800 1.012 0.245
SwinUNETR  0.923  0.945 0.934 0.890 0.803 0.904 0.827 1.004 0.195
UNet(3D) 0.948  0.946 0.947 0.901 0.821 0.905 0.827 1.002 0.202
VNet 0.946  0.949 0.947 0.901 0.821 0.905 0.828 1.003 0.201

Method

analyze three clinically distinct subsets: CTSpine-Refined (healthy morphology),
LDD-Mild (early degeneration), and LDD-Severe (advanced pathology).

CTSpine-Refined: Baseline Performance. In cases with preserved anatomy
(0.8mm isotropic voxels), all 3D methods achieved > 0.92 F1 score for endplate
detection. The uniform intensity profiles (HU range 1,200-1,500) enabled reliable
boundary identification, with surface distance metrics showing submillimeter
accuracy (ASD = 0.195-0.258mm).

However, even in this optimal scenario, as shown in Fig. 2, we observed false
negatives in S1 endplate detection due to sacral curvature variations, highlighting
inherent anatomical complexity.

LDD-Mild: Degenerative Onset. The 0.4mm axial resolution in early de-
generation cases improved vertical structure visualization. Overall, the perfor-
mance of different methods on the LDD-Mild subset is slightly better than on
the CTSpine-Refined subset. This is mainly due to the higher resolution of im-
ages in LDD-Mild, which provides more detailed information. Additionally, the
endplate degeneration in LDD-Mild is generally mild, posing less of a challenge
for the segmentation models.
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Table 4. Performance comparison on LDD-Mild subset of our Endplate3D-QCT. The
units of HD95 and ASD are millimeters (mm).

Detection Segmentation Instance Segmentation
Precision Recall F1 Dice Jaccard Dice Jaccard HD95 ASD

EfficientUNet  0.851  0.868 0.860 0.872 0.775 0.884 0.794 1.035 0.219
UNet (2D) 0.915 0.938 0.926 0.887 0.797 0.891 0.805 1.008 0.225

UNETR 0.947  0.947 0.947 0.895 0.810 0.898 0.816 1.018 0.233
SwinUNETR  0.946 0.949 0.947 0.905 0.827 0.909 0.835 1.014 0.201
UNet (3D) 0.972  0.961 0.966 0.915 0.844 0.916 0.847 1.005 0.187
VNet 0.960 0.956 0.958 0.918 0.849 0.919 0.852 1.010 0.187

Method

Table 5. Performance comparison on LDD-Severe subset of our Endplate3D-QCT.
The units of HD95 and ASD are millimeters (mm).

Detection Segmentation Instance Segmentation
Precision Recall F1 Dice Jaccard Dice Jaccard HD95 ASD

EfficientUNet  0.600  0.554 0.576 0.773 0.641 0.862 0.759 1.123 0.232
UNet (2D) 0.704 0.728 0.716 0.832 0.716 0.869 0.770 1.139 0.273

UNETR 0.778  0.785 0.782 0.853 0.747 0.880 0.788 1.139 0.294
SwinUNETR  0.803 0.818 0.811 0.863 0.761 0.886 0.798 1.120 0.261
UNet (3D) 0.887  0.891 0.889 0.880 0.787 0.895 0.813 1.112 0.258
VNet 0.875  0.870 0.872 0.885 0.796 0.900 0.821 1.125 0.253

Method

LDD-Severe: Pathological Extremes. Severely degenerated cases (0.39mm
spacing, extensive osteophytes) exposed fundamental limitations. Despite having
the same voxel dimensions as LDD-Mild, the increased pathological complexity
led to a decline in all evaluation metrics, highlighting the challenges of LDD-
Severe. Although the Segmentation performance did not drop significantly (e.g.,
Dice decreased from 0.918 to 0.885 for VNet), the decline in Detection metrics
was particularly pronounced, with Recall dropping below 0.9 across all methods.
Notably, EfficientUNet had the lowest Recall, reaching only 0.554. We believe
that the decline in performance of all models on this subset is primarily due to
the excessive morphological variability of the endplates in these cases, resulting
in their irregularity.

4 Conclusion

In this study, we introduce the open-access dataset Endplate3D-QCT, featuring
pixel-level annotations of lumbar endplates in clinical quantitative CT (QCT)
scans. Building upon this dataset, we developed an automated evaluation frame-
work for robust performance assessment. Extensive experiments were conducted
using widely-used segmentation models to perform comprehensive benchmark-
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ing. These resources establish a foundation for advancing endplate-specific anal-
ysis, contributing to improved research in spinal biomechanics, personalized im-
plant design, and bone density mapping.

While our dataset represents a significant advancement in endplate charac-
terization, current deep learning methods still fall short of the precision required
for clinical application. Despite achieving high Dice scores on relatively healthy
spines, all tested models exhibit inconsistencies in identifying endplates, partic-
ularly in the presence of severe degenerative changes. To bridge the gap between
research and clinical applicability, future efforts should develop more robust seg-
mentation techniques capable of handling pathological variations. Furthermore,
intraoperative validation studies are essential to establish direct correlations be-
tween segmentation accuracy and surgical outcomes, ensuring that Al-assisted
methods meet the stringent requirements of clinical decision-making.
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