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Abstract. Portal hypertension (PHT), a critical complication of liver
disease, is primarily assessed via invasive procedures that carry inher-
ent risks and discomfort. Recent advancements in deep learning have
demonstrated potential for non-invasive diagnostic assistance based on
computed tomography (CT) images. However, the small sample size and
notable imbalance in PHT clinical data severely restrict the performance
of deep learning methods, while the bias introduced by label discretiza-
tion further compromises model robustness. To address these challenges,
we propose a Regression-assisted Classification (RAC) method for non-
invasive PHT diagnosis. Firstly, we propose the RAC method instead of
direct classification, enabling fine-grained estimation of hepatic venous
pressure gradient (HVPG) values before making categorical decisions,
thereby reducing the bias caused by discrete label assignment. Moreover,
the boundary-aware weighted learning method is proposed to jointly op-
timize model parameters and the loss function by dynamically assigning
online bucket-based weights and enforcing gradient balance across de-
cision boundaries. We show that this approach can significantly reduce
the impact of data imbalance and help handle the challenges of small-
sample learning in PHT diagnosis. Experiments on our collected clinical
CT dataset achieve 83.28% accuracy and 82.69% for the area under the
receiver operating characteristic curve in the three-class classification
task of PHT, outperforming the cross-entropy baseline by +1.01% and
+2.38%, respectively. These results demonstrate leading performance in
PHT multi-class classification diagnostic tasks and offer an effective so-
lution for the direct diagnosis of PHT based on CT images.
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omputed tomography images · Boundary-aware Weighted learning.
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1 Introduction

Portal hypertension (PHT) is a clinical syndrome characterized by abnormally
elevated portal pressure, and it is closely linked to the progression of liver dis-
ease [2, 13, 21]. The hepatic venous pressure gradient (HVPG) is the gold stan-
dard for quantifying PHT severity, with specific thresholds (e.g., >5mmHg for
clinically significant PHT) guiding therapeutic decisions. [1, 24]. However, the
current HVPG measurement method is invasive, complicated, and carries risks
such as bleeding and infection [2]. As a consequence, there is increasing inter-
est in non-invasive alternatives [12,15,19,22]. Deep learning has recently shown
great promise in medical imaging, particularly for non-invasive diagnostic assis-
tance using CT images [7, 10, 18, 23]. These methods can automatically extract
key image features, thereby improving diagnostic accuracy and stability while
reducing human subjectivity. This makes deep learning a strong candidate for
PHT assessment.

Despite its potential, the application of deep learning to CT image-based
PHT diagnosis remains underexplored [16]. Existing methods face two main
challenges. The first one is the difficulty of modeling continuous HVPG values
using pure classification. Most existing deep learning models categorize HVPG
into discrete classes, which compromises the continuous nature of HVPG values.
This discretization leads to information loss, potentially classifying similar cases
into different categories while grouping dissimilar cases together, thereby mask-
ing the actual differences between them. The other challenge is data scarcity
and heterogeneity. HVPG measurements are difficult to obtain, resulting in a
limited amount of labeled data. Many deep learning models rely on large-scale
datasets [5,9,17], but the scarcity of data makes these models vulnerable to dis-
tribution bias. Additionally, clinical HVPG values are unevenly distributed, with
a relative scarcity of healthy cases with low values. This imbalance causes mod-
els to predict higher HVPG values more frequently, leading to larger errors in
predicting lower HVPG values and affecting the overall accuracy of the model.
While class imbalance has been studied in medical imaging [3, 6, 26], effective
solutions for CT-based PHT staging remain limited.

To address these challenges, we propose a regression-assisted classification
(RAC) method. By integrating regression loss into the model, RAC jointly trains
classification and regression tasks, preserving the continuous nature of HVPG
values and reducing information loss from discrete classification. Additionally,
we introduce a novel boundary-aware weighted (BAW) loss to handle small sam-
ple sizes and data imbalance. It employs a bucket-splitting strategy to improve
data utilization and an adaptive weighting mechanism to prioritize low-frequency
targets. Boundary constraints are also incorporated to dynamically regulate loss
contributions, thus enhancing the focus of model on low-frequency data and im-
proving generalization. Our main contributions are summarized as follows: (1)
We propose a RAC method, unifying classification and regression to mitigate dis-
cretization bias by preserving HVPG continuity. (2) We design a BAW loss with
adaptive weighting and boundary-aware optimization, improving learning from
low-frequency data. (3) Experiments on a clinical CT dataset show our method
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Fig. 1. The overall method of RAC. It consists of data preprocessing module, feature
extraction module and prediction module. Child-Pugh score information is combined
with CT image processing for assisted prediction.

outperforms existing approaches in PHT classification accuracy, demonstrating
strong clinical potential.

2 Method

2.1 Regression-assisted Classification Method

Our proposed RAC method, illustrated in Fig. 1, comprises three main modules:
the data preprocessing module, the feature extraction module, and the prediction
module. Before the data preprocessing stage, medical professionals first identified
salient layers containing key organs and structural tissues from the CT images
and delineated regions of interest (ROIs) based on clinical expertise. Notably,
different organs and structural tissues may correspond to multiple salient layers
(i.e., multiple CT slices).

In the data preprocessing module, we construct a high-quality dataset by en-
suring each sample includes salient layers from all key regions. To address data
scarcity and standardize sample size, multiple salient layers are aggregated into
composite samples, while maintaining strict train-test separation based on med-
ical records to prevent data leakage. In the feature extraction module, spatial
and contextual features are extracted from each salient layer using the VPT-
Deep [11] model and concatenated with Child-Pugh (CP) scores to integrate
imaging and clinical data. The prediction module employs a joint classification
and regression head to predict categorical PHT labels and continuous HVPG val-
ues. A multi-task loss optimizes both objectives, enhancing diagnostic accuracy
and robustness.
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2.2 Boundary-aware Weighted Loss for Regression

Currently, there is a lack of regression loss functions specifically designed for im-
balanced datasets with limited sample sizes. To address the issue of label imbal-
ance, we draw inspiration from existing work, particularly the Label Distribution-
aware Margin (LDAM) [4] method. LDAM is a highly effective approach that
introduces adaptive boundaries for different classes based on their sample distri-
bution. By assigning larger boundaries to minority classes and smaller bound-
aries to majority classes, the LDAM loss forces the model to learn more dis-
criminative feature representations for minority classes. This strategy effectively
mitigates the bias of classifier toward majority classes, thereby improving over-
all performance in imbalanced scenarios. The LDAM loss function is defined as
follows:

LLDAM((x, y); f) = − log
ezy−γy

ezy−γy +
∑

j ̸=y e
zj
, (1)

where γj = C

n
1
4
j

represents the decision boundary for a particular class j ∈

{1, . . . , k}, nj is the number of samples in class j, and zy = f(x)y denotes the
output of model for input data x and label y. By analyzing the data distribution,
the LDAM loss function dynamically adjusts boundary sizes for different classes.
This approach limits the influence of the majority class while enhancing the
model’s focus on learning the minority class.

Inspired by this method and combining it with the scenario of the regression
task, we propose a new loss function BAW loss:

LBAW =
1

N

(
N∑
i=1

{max (0, wi · ρi −M)}+ λL1

)
, (2)

where ρi = δ2 ·

(√
1 +

(
yi−ŷi

δ

)2
− 1

)
denotes the Pseudo-Huber loss for a single

sample, δ is the hyperparameter, yi and ŷi is the true label and predicted value,
respectively. Additionally, wi represents the trainable weight for each sample, M
denotes the sample boundary adjustment parameter, and λ is a hyperparameter
controlling the regularization strength. The regularization term is formulated as:

L1 =

Bin∑
j=1

(wj ·Nj) , (3)

where, Bin is the number of sub-buckets, wj is the weight assigned to the samples
in the j-th bucket and Nj is the number of samples in the j-th bucket.

We adopt the Pseudo-Huber function as the baseline loss function, which
retains the robustness to outliers and gradient smoothing of the Huber function
while addressing its non-differentiability at the critical point. During training,
the BAW strategy divides continuous labels into buckets based on the data dis-
tribution. Low-frequency data are concentrated in buckets with fewer samples,
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enabling better information sharing and reducing the impact of extreme values.
The weight wi is dynamically adjusted to assign higher weights to low-frequency
data, mitigating data imbalance. In the optimization process, the model adjusts
sample boundaries based on bucket weights. For low-frequency data, the weights
increase, leading to wider decision boundaries and larger loss gradients, enhanc-
ing their optimization strength. For high-frequency data, the decision boundaries
shrink, and loss gradients decrease to prevent over-fitting.

2.3 Learning Method for Regression-assisted Classification

Our proposed RAC method uses gradient descent method to optimize the model.
By jointly training the regression and classification tasks, the RAC method is
able to learn both continuous values and discrete labels, thus improving the gen-
eralization ability and diagnostic accuracy of the model. The overall loss function
consists of regression loss and classification loss, and is formally represented as:

LRAC =
1

2
(LBAW + LClassify) , (4)

where LClassify is the loss function of classification task. Combining Eq. 2 with
the chain derivation rule, we can get:

∂LRAC

∂ŷi
=


wi · (yi−ŷi)√

1+
(

yi−ŷi
δ

)2
·δ
+

∂LClassify
∂ŷi

, if wi (ρi −M) > 0

∂LClassify
∂ŷi

, otherwise
. (5)

Meanwhile, the weight gradient of the bucket can be calculated as:

∂L

∂wi
=

{
(ρi −M) + λ ·Nj , if wi (ρi −M) > 0

0, otherwise
. (6)

After gradient back propagation, the parameter θ gradients of the model are:

∂L

∂θ
=

∂LRAC

∂ŷ
·
K−1∏
m=k

∂ŷ

∂z(m)

∂z(m)

∂θ
, (7)

where K is the number of layers.
Based on Eqs. 4-7, we effectively achieve the co-optimization of the loss func-

tion and model parameters for the joint regression and classification tasks within
the RAC method. This co-optimization enables the model to simultaneously
learn continuous and discrete representations, leveraging the complementary in-
formation from both tasks to enhance overall performance.

3 Experiments

3.1 Dataset and Metrics

Dataset The clinical dataset, collected from West China Hospital of Sichuan
University, includes 285 subjects with CT images annotated at four key anatomi-
cal levels (first porta of liver, secondary porta of liver, splenic vein, and spleen) by
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Table 1. Comparison with state-of-the-art work.

Dataset Task Class Method Acc. F1 Rec. Prec. Spec. AUC
(%) (%) (%) (%) (%) (%)

Liu [16] C 2 CT-based - - 92.90 89.00 87.90 91.20deep CNN [16]

Ours

R

3

LDS [25] 82.19 41.76 42.56 43.18 74.38 -
FDS [25] 83.73 44.43 47.82 41.89 78.04 -

LDS+FDS [25] 81.78 40.87 41.95 46.84 74.02 -
BMC [20] 82.88 46.87 48.88 47.73 76.96 -
BNI [20] 81.91 40.77 42.24 40.65 73.77 -
BAW 84.71 46.19 47.69 47.65 78.36 -

C
CE 82.27 50.34 49.92 52.70 78.20 80.31

Focal [14] 82.03 54.76 53.94 58.10 80.60 76.40
LDAM [4] 82.59 54.32 52.95 65.68 79.43 81.11

RAC
CE+BAW 83.53 56.69 54.85 64.74 77.74 81.13

Focal+BAW 83.11 50.75 51.24 58.86 78.96 77.16
LDAM+BAW 83.28 61.55 59.58 69.59 82.39 82.69

CE

CE + BAW

Focal

Focal + BAW

LDAM

LDAM + BAW

(a) (b) (c)

(d) (e) (f)

Fig. 2. ROC curves of classification and regression-assisted classification methods.

specialized physicians. Each case contains CP scores and HVPG measurements
(2-37mmHg), with a highly imbalanced distribution (HVPG ⩽ 5mmHg : 16
subjects, 5mmHg < HVPG ⩽ 12mmHg : 39 subjects, HVPG > 12mmHg : 230
subjects). We used five-fold cross-validation for robust evaluation.

Metrics To evaluate model performance, we employ accuracy (Acc.), F1 score
(F1), recall (Rec.), precision (Prec.), and specificity (Spec.) as evaluation met-
rics. All metrics, except for accuracy, are computed using the macro-average
approach, which calculates the arithmetic mean of the metric values obtained
for each class independently. Additionally, we introduce the receiver operating
characteristic (ROC) and the area under ROC curve (AUC) to measure the over-
all discriminative ability across different decision thresholds. This ensures that
the evaluation is not dominated by the majority classes and provides a balanced
assessment of model performance across all categories.
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Fig. 3. Visualization results by attention rollout for different tasks. (a)classification,
(b)regression and (c)regression-assisted classification.

Table 2. Ablation study for different components in our method on our dataset.

Weighted Boundary Acc.(%) F1(%) Rec.(%) Prec.(%) Spec.(%)
84.02 45.72 48.00 45.85 78.53

! 83.96 44.23 45.42 50.36 75.67
! 83.51 44.13 44.82 45.23 74.31
! ! 84.71 46.19 47.69 47.65 78.36

3.2 Implementation Details

All experiments were conducted on NVIDIA Tesla A800 GPUs. The encoder is
based on the VPT-Deep architecture, with only the parameters of the prompt
tokens and the regression head being trained. During preprocessing, we extracted
the ROIs from each CT slice, resized the images to 224 × 224 pixels, and ap-
plied luminance normalization and histogram equalization to enhance image
quality. For the inconsistent number of CT slices across the four anatomical
levels, the slices were reorganized into a total of 1,094 samples. The distribu-
tion of these samples based on HVPG values are as follows: 74 samples with
HVPG ⩽ 5mmHg, 158 samples with 5mmHg < HVPG ⩽ 12mmHg, and 862
samples with HVPG > 12mmHg. For training, we set the batch size to 32,
the learning rate to 0.001, and use the Adam optimizer by default. The train-
ing process is run for a total of 50 epochs to ensure convergence. The codes of
our fundamental model are available at https://github.com/GuoLab-UESTC/
RAC-for-CT-based-PHT. The pretrained model weights and data subset for vali-
dation can be found at https://drive.google.com/drive/folders/1DEQ9fm_
4E2hIRZ0ymvecKbUJXfxVcMr4?usp=drive_link.

3.3 Comparison Study

To validate the RAC method’s effectiveness in diagnosing PHT with imbal-
anced, small-sample data, we conducted comparative experiments. First, we com-
pared the BAW loss with imbalanced regression methods (LDS [25], FDS [25],
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BMC [20], BNI [20]). Then, we integrated RAC with imbalanced classification
methods (Cross-entropy(CE), Focal Loss [14], LDAM Loss [4]) to test its com-
patibility. All methods used the same hyperparameters for fairness. Results are
shown in Table 1. Notably, R stands for Regression, C stands for Classification,
and RAC is our proposed method that have used BAW loss.

In regression method comparisons, BAW outperforms BMC in Accuracy
(1.83% ↑) and Specificity (1.40% ↑), showing superior overall performance. While
slightly lower in recall and precision, BAW achieves a higher correct classification
rate and reduces misclassification, demonstrating stable prediction across cate-
gories and improved differentiation between majority and minority classes. BAW
and other regression methods perform poorly on metrics other than accuracy, in-
dicating a considerable bias in the models. This highlights the need to integrate
BAW with classification losses for a more balanced learning process. When com-
bined, CE+BAW improves F1-Score, Recall, and Precision by 6.35%, 4.93%, and
12.04%, respectively, over CE. Compared to Focal Loss, BAW enhances Accu-
racy, Precision, and AUC. LDAM+BAW outperforms LDAM in all metrics, with
F1-Score, Recall, Precision, and Specificity improving by 7.23%, 6.63%, 3.91%,
and 2.96%, respectively. In summary, the RAC method with BAW loss improves
classification accuracy and category differentiation, particularly in small-sample
imbalanced data scenarios. As shown in Fig. 2, the ROC curves further validate
the effectiveness and stability of our proposed RAC method.

3.4 Ablation Study

We first evaluated the loss function without additional mechanisms and found
that neither the weighting mechanism nor boundary adjustment alone improves
performance. However, their combination significantly enhance model perfor-
mance, as shown in Table 2. The weighting mechanism adaptively adjusts de-
cision boundaries for different categories, while boundary adjustment ensures
stability and prevents bias toward high-frequency categories. Together, they re-
duce category bias and improve prediction balance under imbalanced data.

We used attention rollout [8] to visualize feature maps for classification-only,
regression-only, and RAC models. As shown in Fig. 3, RAC exhibits more fo-
cused attention, less noise, and better localization of key regions (e.g., liver edges
and texture) compared to the diffuse attention and background noise of other
models, further validating the effectiveness in PHT diagnosis.

4 Conclusion

In this study, we propose the RAC method to improve the diagnostic capability
for PHT using small-sample, imbalanced CT images. The RAC method inte-
grates regression-assisted classification and a novel BAW loss function, effectively
capturing continuous features and enhancing the optimization of low-frequency
samples. Experimental results demonstrate that RAC significantly improves the
accuracy, robustness, and generalization ability of PHT diagnosis, showcasing
its potential for broader medical image analysis tasks.
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