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Abstract. The rise of Transformer architectures has advanced medi-
cal image segmentation, leading to hybrid models that combine Con-
volutional Neural Networks (CNNs) and Transformers. However, these
models often suffer from excessive complexity and fail to effectively inte-
grate spatial and channel features, crucial for precise segmentation. To
address this, we propose LHU-Net, a Lean Hybrid U-Net for volumet-
ric medical image segmentation. LHU-Net prioritizes spatial feature ex-
traction before refining channel features, optimizing both efficiency and
accuracy. Evaluated on four benchmark datasets (Synapse, Left Atrial,
BraTS-Decathlon, and Lung-Decathlon), LHU-Net consistently outper-
forms existing models across diverse modalities (CT/MRI) and output
configurations. It achieves state-of-the-art Dice scores while using four
times fewer parameters and 20% fewer FLOPs than competing models,
without the need for pre-training, additional data, or model ensembles.
With an average of 11 million parameters, LHU-Net sets a new bench-
mark for computational efficiency and segmentation accuracy. Our im-
plementation is available on github.com/xmindflow/LHUNet.

Keywords: Volumetric Medical Image Segmentation - Light Hybrid Ar-
chitecture - Computational Efficiency

1 Introduction

Medical image acquisition technologies such as MRI, CT, and X-ray enable non-
invasive imaging of anatomical structures, making image segmentation essential
for diagnosis, intervention planning, and disease assessment. Manual segmen-
tation is time-consuming and prone to inconsistencies, necessitating automated
methods. While deep learning approaches, particularly Convolutional Neural
Networks (CNNs), have advanced medical segmentation, their performance can
be limited by a lack of global context [2,11]. Vision Transformers (ViTs) [6], which
use self-attention to capture global context, have addressed this gap but often
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Fig. 1: Model performance on the BraTS-Decathlon dataset: (left) DSC vs. pa-
rameter count with FLOPs annotated next to each point and (right) DSC vs
FLOPs with parameter count annotated next to each point.

fail to preserve fine-grained local details essential for accurate segmentation [3].
Segmentation becomes even more challenging in the 3D domain due to the in-
creased data volume and complexity. However, 3D models have been shown to
outperform 2D models by capturing better context and improving segmentation
accuracy [11,4]. Despite this, 3D models typically require higher computational
power and parameter counts [4,3]. A common trend is to use the same module
across all layers to achieve state-of-the-art performance [1,27,5,20]. However, we
argue that using tailored modules for different layers can make the model more
efficient, achieving better segmentation with lower computational costs. Hybrid
models, which combine CNNs for local feature extraction with ViTs for global
context, have gained popularity in tackling these challenges. While promising,
many existing hybrid models increase complexity without proportional improve-
ments in performance, leading to excessive computational costs [28,9,7]. To ad-
dress this, LHU-Net (Lean Hybrid U-Net) optimizes attention mechanisms by
using spatial attention in early layers for local feature extraction and channel
attention in deeper layers for broader contextual understanding. This approach
balances model complexity with efficiency, significantly reducing computational
cost while improving 3D medical image segmentation performance. In this pa-
per, we present LHU-Net with the following contributions: @ Efficient Hybrid
Attention selection for Better Contextual Understanding: LHU-Net uti-
lizes two specialized attention mechanisms within ViTs to capture both local
and global contexts effectively. It combines Large Kernel Attention with an ex-
tra deformable attention layer (LKAd) to manage long-range dependencies and
maintain high-frequency details. In the early layers, spatial attention focuses on
local features, while in deeper layers, channel attention captures global feature
interactions, ensuring a comprehensive feature extraction process suited for med-
ical image segmentation. @ High Efficiency with Minimal Cost: On BraTs,
it reduces parameters by 75% and FLOPS by 21% while maintaining top DSC
performance, averaging 11 M parameters across datasets (Fig. 1). ® Robust
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Fig.2: Overview of the LHU-Net’s encoder-decoder structure, featuring CNN
and hybrid blocks. The hybrid block can switch between OmniFocus Attention
(Channel Attention) and Self-Adaptive Contextual Fusion (Self Attention).

Across Modalities: Excelling in CT, MR, and multimodal datasets, LHU-Net
handles both single- and multi-label segmentation tasks with high versatility.

2 Methodology

LHU-Net extracts features efficiently by combining convolutional blocks with
hybrid attention mechanisms to capture both local and global contexts. As shown
in Fig. 2, its U-Net encoder-decoder processes 3D patches, with the encoder
refining multi-scale features and skip connections transferring key details for
segmentation reconstruction. Initial convolutional blocks enhance local features
and reduce spatial dimensions, while core hybrid blocks integrate large kernel
convolutional attention followed by deformable convolution and spatial-channel
ViT attention to capture global features and long-range dependencies. Detailed
explanations of each stage follow.

2.1 CNN Blocks

Our architecture employs CNN blocks to capture local features at high and mid-
frequency levels efficiently. Unlike models relying solely on ViTs, we use Res-
Blocks with MaxPool to downsample spatial dimensions while preserving key
details for later hybrid processing. Before the encoder, an initial refinement is
applied using a point-wise convolution (PW-Conv) followed by PReLU and batch
normalization to maintain spatial resolution and sharpen boundaries. Each en-
coder layer employs a ResBlock that begins with a depth-wise convolution, batch
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Table 1: LHU-Net training configuration along with parameter and FLOPs com-
parisons with SOTA models. Blue and red indicate the best and second-best
results, respectively.

LHU-Net Details H Synapse H Lung-Decathelon HBraTS-DecathelonH LA

Patch size 128 x 128 x 64 192 x 192 x 32 128 x 128 x 128 96 x 96 x 96
Base learning rate 0.003 0.003 0.01 0.01
Downsample* 2,2,1],2,2,2,2 ||[2,2,1],[2,2,1],2,2,2 2,2,2,2, 2 2,2,2,2, 2
Methods HParams.‘L‘FLOPslHParams.L‘ FLOPs| HParamS.H FLOPs| HParams.J,‘FLOPs,L
nnUNet [11] 30.71 M |476.58 G|| 30.79 M | 561.82 G 31.20 M | 484.59 G || 30.79 M [539.34 G
MedNeXt-M-K3 [19]|| 17.55 M [123.47 G|| 17.55 M | 137.48 G 17.55 M | 247.64 G || 17.55 M [103.84 G
MedNeXt-M-K5 [19]|| 18.26 M [153.52 G|| 18.26 M | 171.29 G 18.26 M | 307.74 G || 18.26 M |129.20 G
CoTr [25] 41.87 M |334.23 G|| 41.86 M 375.11 G 41.93 M | 701.52 G || 41.86 M [281.33 G
nnFormer [28] 150.5 M | 213.4 G || 149.12 M | 136.10 G 37.75 M | 106.45 G || 149.22 M [102.35 G
UNETR++ [20] 4296 M | 47.98 G || 121.18 M | 125.84 G 42.65 M | 73.59 G || 29.54 M | 29.74 G
Swin-UNETR |7] 62.83 M |384.2G || 62.19 M | 429.95 G 622 M | 77498 G || 62.19 M |319.38 G
TransBTS [24] 32.79 M [324.13 G|| 32.79 M | 323.73 G 3299 M |326.48 G || 31.58 M [119.81 G
UNETR [3] 9249 M | 75.76 G || 121.18 M 98.40 G 102.45 M | 184.76 G || 92.78 M | 73.51 G
LHU-Net || 1047 M |37.49 G || 1468 M | 5226 G | 1048 M | 5743 G || 853 M |2220G

normalization, and leakyReL U, followed by another depth-wise convolution with
batch normalization. A residual connection, processed through PW-Conv and
batch normalization, is added before a final leakyReLU activation. MaxPool is
then used to downsample the spatial dimensions, which reduces the feature map
size and aggregates prominent features, making the subsequent processing more
effective. This approach achieves two key objectives. It reduces the computa-
tional cost of processing large spatial dimensions with ViT blocks and preserves
local features by delaying downsampling until after initial refinement, thereby
optimizing parameter usage.

2.2 Hybrid Blocks (Hybrid Attention)

In the intermediate and deep layers, we employ hybrid blocks to enhance segmen-
tation by balancing local detail with global context. By integrating the LKAd
module as a CNN attention block, these blocks improve boundary delineation
and object identification. Building on robust local features from earlier stages,
our hybrid blocks use larger kernel sizes to capture broader spatial representa-
tions and deploy deformable attention to focus on relevant receptive fields. Spa-
tial ViT attention is applied in the early part of this stage, while channel ViT
attention in later layers aggregates high-level features. This design overcomes
the limitations of repeated fixed modules [20,18,14] and avoids the redundancy
seen in methods that repeat blocks across levels [4,22/10,13]. Our level-specific
modules ensure that each stage effectively captures its unique features, resulting
in improved segmentation performance with fewer parameters and lower com-
putational cost.

Self-Adaptive Contextual Fusion Module: This module is integrated
into the top hybrid blocks to enhance global structure capture by fusing spa-

4 A single integer indicates uniform downsampling across all axes.
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Table 2: Comparison of LHU-Net with SOTA methods on the Synapse dataset.
Blue and red indicate the best and second-best results, respectively. Metrics

include DSC for individual organs, average DSC, and HD95. Parameter counts
(M) and FLOPs (G) are also reported.

Methods ‘Params¢ FLOPSiH Spl RKid LKid Gal Liv Sto Aor Pan }%
UNETR [§] 92.49 M 75.76 G ||85.00 84.52 85.60 56.30 94.57 70.46 89.80 60.47|| 78.35  18.59
Swin-UNETR |[7] 62.83 M 384.2 G |(95.37 86.26 86.99 66.54 95.72 77.01 91.12 68.80|| 83.48  10.55
nnFormer [28] 150.5 M 213.4 G |[90.51 86.25 86.57 70.17 96.84 86.83 92.04 83.35|| 86.57  10.63
UNETRA-+ [20] 4296 M 47.98 G ||95.77 87.18 87.54 71.25 96.42 86.01 92.52 81.10|| 87.22  7.53
TC-CoNet [5] 313.67 M 699.58 G [|91.77 87.92 88.16 62.00 96.35 79.40 92.45 72.78|| 83.86  9.64
D-LKA Net [/] 42.35 M 66.96 G [[95.88 88.50 87.64 72.14 96.25 85.03 92.87 81.64|| 87.49  9.57
TransBTS [24] 32.79 M 324.13 G|[91.65 86.99 87.46 62.52 96.42 77.39 91.71 72.12|| 83.28  12.34
CoTr [27] 41.87 M 334.23 G [[94.93 86.80 87.67 62.90 96.37 80.46 92.43 78.84|| 85.05  9.04
nnUNet [11] 30.71 M 476.58 G ||91.16 86.21 86.92 69.77 96.49 85.92 91.78 83.23|| 86.44  10.91
MedNeXt-M-K3 [19]{| 17.55 M 123.47 G{|90.63 86.50 87.66 73.00 96.92 77.89 92.25 80.81|| 85.71  19.10
MedNeXt-M-K5 [19]|| 18.26 M 153.52 G ||91.16 87.51 87.67 71.31 97.01 80.46 92.48 80.20|| 85.97  17.59
LHU-Net || 10.47 M 37.49 G |[96.02 87.46 87.75 74.30 96.83 85.73 92.53 82.04| 87.83  6.26

tial attention maps from both the LKAd (D) and self-attention (S) mechanisms.
This effectively preserves global context and minimizes information loss in deep
encoder layers. Within the module, LKAd uses a deformable grid to adaptively
capture local and global features, while S handles long-range dependencies and
reduces texture bias to maintain high-frequency details. The final output is com-
puted as:

Fg = Comb (F + 0; D(F) + v S(F)) (1)

where F € REXHXWXD g the input feature map, Fg is the output, and J,
and ~, are learnable weights that balance the contributions of the two attention
mechanisms. The C'omb function, as shown in Fig. 2, processes the fused output
through a ResBlock and a PW-Conv, followed by a residual connection and batch
normalization. This design ensures effective feature fusion and robust contextual
representation.

LKAd (D): This module computes attention following the method in [4].
The input tensor € RE*H*WxD yndergoes these steps:

& = GELU(PW-Conv(x)),
2rKAd = PW-Conv(DDW-Convs(DWD-Conv(DW-Conv(2)))) @ &,

First, x is refined via a pointwise convolution and GELU activation, pro-
ducing z. Next, sequential depth-wise and dilated convolutions extract multi-
scale local features, The key step is the deformable depth-wise convolution
(DDW-Convs), which enables adaptive sampling, enhancing fine-detail and long-
range dependency capture. Finally, element-wise multiplication with z yields
TLKAd, a rich, contextually enhanced representation of x.

Self-Attention (S): The self-attention module computes S(z) from a nor-
malized tensor x of shape n x C, where n = H x W x D. First, three linear layers
generate queries, keys, and values as Q = W®z, K = W¥z, V = WVz, each
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Table 3: Comparison of LHU-Net with SOTA models on BraTS, Lung, and LA
datasets. Blue and red indicate the best and second-best results, respectively.

Method I BRATS (MRI) | Lung (CT) || LA (MRI)
| WT ET TC |DSC 1 HD95 |||DSC 1t HD95 |||DSC 1 HD95 |
UNETR 3] 90.35 76.30 77.02| 81.22  6.61 || 73.29 23.84 [[91.25 9.23
TransBTS [2/] 90.91 77.86 76.10| 81.62  5.80 |/ 70.38 30.09 || 92.25 4.92
Swin-UNETR [7]  ||91.12 77.65 78.41| 82.39 533 | 75.55 28.74 || 91.89 5.96
CoTr [2] 91.01 77.52 77.43| 81.99  5.78 || 75.74 27.91 || 92.60 4.87
nnUNet [11] 91.21 77.96 78.05| 82.41 558 | 74.31 28.52 || 92.75 435
nnFormer [25] 91.23 77.84 77.91| 82.34 518 | 77.95 16.25 |/ 92.02 5.08
MedNeXt-M-K3 [19]{|91.42 78.24 77.98| 82.55 5.13 || 80.14 2.85 || 92.68 4.49
MedNeXt-M-K5 [19]{|91.21 78.15 78.03| 82.46  5.37 || 79.51 2.84 |/ 92.50 4.68
UNETR++ [20] 91.27 78.39 78.60| 82.75  5.05 || 80.68 2.79 || 92.55 5.08
LHU-Net ||91.56 80.03 79.83| 83.81 4.83 ||81.27 3.23 || 92.91 3.9

reshaped to n x h X % for h heads. Following [20], two additional projections
transform K and V into learnable representations: K, = WE K, V, = W[V, re-
ducing the spatial dimension from n to p (with p < n), which improves efficiency
and focuses attention on the most representative features. Next, the normalized
Q is multiplied by KPT (scaled by v/d) and the resulting values are adjusted using
the learnable parameter « and passed through a softmax (o)to obtain similarity
scores, which are then multiplied by V), to yield the spatial attention where it is
further refined by a linear normalization and a linear layer.

OmniFocus Attention Block: At the deepest network level, this block
processes the richest feature layers by operating residually in the encoder and
collectively in the decoder. It enhances feature representation by reducing noise
and capturing essential details through integrated convolutional flows. The block
leverages ViT channel attention (C) alongside the LKAd module to learn inter-
channel relationships and long-range dependencies. Specifically, the block applies
the LKAd module (see Equation 2) and a channel attention module that com-
putes inter-channel interactions using dot-product attention on projections Q¢,
Kc, and ch

xcvo.a( %(C) (3)

After linear normalization and an additional linear layer, the final output is
produced by a Comb function that fuses the LKAd and channel attention outputs
with learnable weights (similar to the Self-Adaptive Contextual Fusion Module).
This design avoids redundant module repetition and effectively extracts rich
contextual information, thereby enhancing overall segmentation performance.
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Fig.3: Qualitative comparison of LHU-Net and UNETR++ across Synapse,
BraTS-Decathlon, Lung-Decathlon, and LA datasets.

3 Experimental setup and results

3.1 Datasets, experimental setup and evaluation metrics

To assess model effectiveness, we used four datasets: two CT-based and two
MRI-based. Synapse [12] consists of 30 abdominal CT scans, split as in [1,20]
(18 for training, 12 for testing). Evaluated on eight organs: aorta, gallbladder,
spleen, left /right kidneys, liver, pancreas, and stomach. Lung-Decathlon [1,21]
consists of 63 CT scans for lung cancer segmentation, using an 80:20 training-
validation split [20]. BraTs-Decathlon [1,16] which consists of 484 MRI scans
(FLAIR, T2w, Tlw, Tlce) for segmenting whole tumor (WT), enhancing tu-
mor (ET), and tumor core (TC). Data split follows [20]. Left Atrial (LA) [20]
consists of 100 MRI scans with varying sizes, preprocessed using Z-score normal-
ization [15,23]. Five-fold cross-validation was used to segment the left atrium.
Evaluation metrics include DSC and HD95, with final segmentation generated
using 0.5 patch overlaps. All datasets used a batch size of 2. The model, imple-
mented in PyTorch 2.1.0 [17] and for fair comparison integrated into the nnUNet
framework [11], was trained on two NVIDIA A100 GPUs (80 GB VRAM). Train-
ing used a composite loss (DICE and cross-entropy, weighted 1:1) and the SGD
optimizer with Nesterov momentum (0.99) and a weight decay of 3 x 1075. The
learning rate followed a polynomial decay strategy (power 0.9), set to an initial
learning rate of 0.01 for isometric patches and 0.003 otherwise. Data augmen-
tation followed [28,20,11]. Training ran for 1000 epochs with 250 iterations per
epoch (250,000 iterations). Table 1 details the network settings for each dataset.

3.2 Quantitative and qualitative results

Table 2 shows the performance of LHU-Net in comparison with SOTA models
on the Synapse dataset. LHU-Net achieves the highest DSC while maintaining
the lowest parameter count and FLOPs, offering a 4x reduction in parameters
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Table 4: Ablation study on the impact of different attention mechanisms on
parameters, FLOPs, and DSC for the BraTS dataset. Each repeated entry rep-
resents attention used in successive hybrid layers. The best model is in bold.

ViT Attn.‘CNN Attn.‘Params.l,‘FLOPs,L‘DSCTIViT Attn.‘CNN Attn.‘Params.”FLOPsHDSCT

SSS DDD 10.51 M | 57.44 G | 82.64 SSC DDI 9.44 M | 57.33 G | 82.35
cceC DDD 79TM | 57.25 G | 82.52 SSC 111 8.88 M | 55.12 G | 81.48
SSC DDD 10.48 M |57.43 G|83.81 SSC LLL 9.02 M | 5555 G | 82.32
SCC DDD 10.33 M | 57.41 G | 83.12 SC DD 512 M | 56.78 G | 82.85

and 44% lower FLOPs compared to the second-best DSC model. Additionally,
LHU-Net improves average HD95 by 16%, enhancing segmentation accuracy.
Although MedNext [19] has a competitive parameter count, its DSC is 2% lower
than LHU-Net, with significantly higher FLOPs. Table 3 presents the quantita-
tive results for the three datasets. As observed, LHU-Net surpasses other meth-
ods by a large margin. However, the HD95 in the Lung dataset reveals some
shortcomings, indicating room for improvement. The parameters and FLOPs of
each SOTA model (Table 1) highlight the efficiency of LHU-Net while outper-
forming SOTA models in Average DSC. Fig. 3 illustrates qualitative comparisons
with UNETR++, one of the leading SOTA models. Across different datasets,
UNETR++ exhibits over-segmentation or label omission, whereas LHU-Net con-
sistently achieves more precise segmentation. This highlights how selecting the
right module for each layer enhances efficiency while setting new benchmarks
across datasets.

4 Ablation studies

We conducted an ablation study on the BraTS dataset to assess the impact of dif-
ferent attention mechanisms on segmentation performance. Table 4 presents the
results, where attention mechanisms were applied to successive hybrid layers,
including large kernel attention (L), LKAd (D), Self-Attention (S), Channel-
Attention (C), and a baseline without CNN attention (I). The SSC-DDD con-
figuration, which applies Self-attention (S) and channel attention (C) on the
ViT side and LKAd (D) on the CNN side, achieves the highest DSC (83.81)
with efficient computation. This demonstrates the advantage of selective atten-
tion combinations over uniform mechanisms. Reducing hybrid layers from three
to two (SC-DD) slightly lowers DSC (82.85) but significantly reduces parame-
ters (5.12M), indicating a strong trade-off between accuracy and efficiency. The
IIT configuration (no CNN attention) performs worst (81.48 DSC), confirming
the necessity of CNN attention mechanisms. Additionally, SCC-DDD achieves
83.12 DSC, suggesting that transitioning from self-attention (S) to channel at-
tention (C) in earlier layers further enhances segmentation. Overall, large kernel
convolutional attention followed by deformable convolution is crucial as a CNN
attention in the hybrid layers, while progressive ViT attention transitions im-
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prove segmentation. Fewer hybrid layers can still offer competitive performance,
making SC-DD a strong alternative for efficiency-focused applications.

The learnable weights (v and J) that balance the contributions of CNN and
ViT attention are crucial, as they vary across datasets (e.g., 0.45 for Synapse and
0.11 for BraTS). This demonstrates that fixed weights are suboptimal; learnable
parameters allow the model to adapt and find the most suitable weight for each
segmentation task.

5 Conclusion

In this work, we introduced LHU-Net, a lean hybrid U-Net for volumetric med-
ical image segmentation. By strategically using spatial attention in early lay-
ers and channel attention in deeper layers, LHU-Net efficiently handles diverse
datasets and segmentation tasks with only about 11 million parameters. Our
results demonstrate that high segmentation accuracy can be achieved with a
simpler model, advancing the development of accessible and effective medical
image analysis tools.
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