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Abstract. Alzheimer’s disease (AD) is characterized by abnormal amyloid-
β (Aβ) deposition, which causes neural damage and cognitive decline.
Aβ positron emission tomography (PET) serves as the gold standard
for preclinical diagnosis of AD. However, practical limitations, including
high costs, radiation exposure, and constrained accessibility, have moti-
vated recent studies to indirectly predict Aβ deposition patterns from
MRI data. Unfortunately, existing methods have not fully leveraged the
coupled pathological information from both functional and structural
brain networks. To address this gap, we propose Graph Reconstruction-
Aware Fusion (GRAF), a novel framework designed to predict regional
Aβ-PET patterns by integrating functional and structural pathological
information. GRAF employs a graph-masked autoencoder to learn in-
tegrated network topology embeddings by reconstructing masked edges
from both functional and structural networks, effectively utilizing node
and edge features. Subsequently, the well-trained encoders are fine-tuned
to predict regional Aβ patterns. Extensive experimental results demon-
strate that our proposed GRAF framework outperforms six state-of-the-
art methods. Our code and representative case examples are publicly
available at https://github.com/ninicassiel/GRAF.

Keywords: Alzheimer’s disease · Amyloid-β PET · Self-supervised learn-
ing · Brain functional-structural network fusion.

1 Introduction

Alzheimer’s disease (AD) is a prevalent and currently incurable neurodegenera-
tive disorder characterized primarily by the abnormal accumulation of amyloid-β
(Aβ), critically disrupting cognitive functions [11,13]. In the early phases of dis-
ease, excessive Aβ deposition triggers a cascade of pathological events, resulting
functional and structural damage, making it a pivotal biomarker for diagnosis
of preclinical AD [21]. Detecting these early pathological changes before clinical
symptoms emerge offers a significant opportunity for timely intervention [13].

https://github.com/ninicassiel/GRAF
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Clinically, Aβ positron emission tomography (PET) is the gold standard for in-
vivo quantifying cerebral Aβ burden, providing vital insights into disease pro-
gression. However, despite its diagnostic value, the widespread use of Aβ-PET is
hindered by high costs, radiation exposure, and limited accessibility, which are
particularly pronounced challenges in resource-limited settings [12]. Therefore,
there is an urgent need for alternative, cost-effective, and non-invasive methods
to infer pathological progression, facilitating preclinical diagnosis and interven-
tions for AD.

Recent advances in MRI techniques have enabled the modeling of complex
brain neural systems as functional and structural networks, capturing dynamic
blood oxygen level-dependent (BOLD) related cognitive activities and white
matter connectivity, respectively [26]. Network attributes have increasingly been
recognized as sensitive indicators of neural damage caused by Aβ deposition,
underscoring their potential as biomarkers for preclinical AD diagnosis [26,28].
Accordingly, graph neural networks (GNNs) have been widely applied to ex-
tract sensitive features from both functional and structural networks for early
diagnosis of AD [7,10]. Furthermore, GNN-based approaches have also demon-
strated enhanced accuracy in diagnosing various other neurodegenerative disor-
ders [1,27].

In addition to diagnostic applications, recent investigations have directly as-
sociated alterations in functional connectivity networks (FCNs) with cortical
Aβ deposition [26]. These findings suggest that resting-state fMRI (rs-fMRI)
signals could serve as effective correlates of Aβ burden as characterized by PET
imaging. For example, Li et al. predicted regional standard uptake value ratios
(SUVR) of cortical Aβ deposition from FCNs [5]. Liu et al. utilized a Large
Language Model (LLM) to extract features from FCNs [12]. However, these
studies have primarily relied on rs-fMRI alone and overlooked the integration of
structural connectivity networks (SCNs) obtained from diffusion MRI (dMRI),
despite evidence demonstrating that structural network topology and the loss of
local structural connectivity contribute to AD diagnosis and the prediction of
cortical Aβ deposition [4,7].

In this paper, to fully exploit the complementary functional and structural
information from fMRI and dMRI data, we propose a graph reconstruction-aware
fusion (GRAF) framework for integrating FCNs and SCNs in predicting regional
Aβ-PET patterns. GRAF comprehensively characterizes Aβ-related functional
and structural alterations, providing an accurate and robust prediction of Aβ-
PET patterns and highlighting its potential for preclinical screening of AD. The
main contributions of this paper are summarized as follows:

– We propose the GRAF framework based on a graph-masked autoencoder,
which integrates node and edge features in FCNs and SCNs, to fully extract
integrated embedding features by reconstructing masked edges.

– We introduce the Node-Edge Bidirectional Encoder specifically formulated to
effectively utilize both node features and edge features from brain networks.

– We develop a cross-attention module specifically designed to leverage com-
plementary information from both functional and structural networks.
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Fig. 1. Illustration of our proposed GRAF for Aβ-PET prediction, which consists of
two stages. (a) Stage I, self-supervised dual-modality brain networks fusion; (b) Stage
II, Aβ-PET pattern prediction; (c) The detailed structure of the node-edge bidirectional
encoder.

2 Method

Our proposed GRAF consists of two stages, as shown in Fig. 1. In Stage I,
we introduce a Self-supervised Dual-modality Brain Networks Fusion module,
to integrate cross-modality information using a masked graph reconstruction
strategy. In Stage II, we fine-tune the trained network components in Stage I
and exploit the integrated embedding to predict the regional Aβ-PET SUVR
patterns using the MLP regressor.

2.1 Dual-Modality Brain Networks

The brain network can be mathematically formulated as a graph G = (V, E ,A),
where V denotes Nv nodes (regions of interest, ROIs), E ⊆ V × V denotes Ne

edges, connecting pairs of ROIs, A denotes the adjacency matrix. Instead of
treating edges as an element of A, we propose to additionally employ them as
edge features and introduce a specific module to integrate features across nodes
and edges in FCNs and SCNs, respectively (see Fig.1 (c)).

FCNs are specifically denoted by Gf = (Vf , Ef ,Af ). In this work, Nf
v =

100 and node features Xf ∈ RNf
v ×16 are derived from BOLD signals using a

1D-CNN to capture task-related temporal dynamics. The edges are defined by
using Pearson’s correlation coefficients, resulting in the adjacency matrix Af and
edge features Ef ∈ RNf

e ×1. Meanwhile, SCNs are denoted by Gs = (Vs, Es,As),
node features Xs ∈ RNs

v×3 are manually extracted from the adjacency matrix
As based on topological attributes, including degree, betweenness, and closeness
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centrality, using Brain Connectivity Toolbox [15]. Edge features Es ∈ RNs
e×3

include the mean white matter microstructural attributes along the tract con-
necting a pair of nodes, i.e., axial, mean, and radial diffusivity. Both functional
and structural networks, Nf

v = Ns
v , are derived from the same Schaefer atlas

with 100 ROIs [16].

2.2 Self-supervised Dual-modality Brain Networks Fusion

To guarantee feature representation and fusion across FCNs and SCNs, we first
employ a self-supervised graph reconstruction framework exploiting both node
and edge features of each brain network (as depicted in Fig.1 (a)). The encoders
(as detailed in Fig. 1 (c)) first perform intra-modal node-edge bidirectional mes-
sage passing to learn modality-specific embeddings. Then, a cross-attention mod-
ule is introduced to integrate the FCNs and SCNs embeddings together thereby
mutually refining both modality-specific and integrated embeddings. Finally, the
decoders recover the masked edges from the integrated embeddings.

Graph Masking We leverage the edge masking strategy to train the encoders
and decoders in GRAF [17,25]. Specifically, we create a masked subgraph through
sampling edges from a Bernoulli distribution: Emask ∼ Bernoulli(p), where the
masking ratio p is set to 0.4 in this work. The masking operation T generates a
masked graph Gmask = T (G), keeping only a subset of the edges from the original
FCNs or SCNs.

Node-Edge Bidirectional Encoder To fully integrate information from both
gray matter (nodes) and white matter (edges), we propose a novel Node-Edge
Bidirectional Encoder that models both node and edge attributes via a separate
integration manner: (1) edge-to-node and (2) node-to-edge.

Given node features X = {x1,x2, ...,xNv
}, xi ∈ Rdl−1

v , and edge features
E = {e1, e2, ..., eNe

}, ei ∈ Rdl−1
e , our proposed encoder applies an edge-to-node

attention mechanism to update node embeddings. As illustrated in Fig. 1 (c),
for edges ek ∈ Ei connected to a node vi, the attention coefficient is given by,

αik =
exp

(
σ
(
a⊤e [Wnxi ∥ Week]

))∑
j∈Ei

exp (σ (a⊤e [Wnxi ∥ Weej ]))
, (1)

where Wn ∈ Rdl−1
v ×dl

v and We ∈ Rdl−1
e ×dl

e are learnable projection matrices,
ae is the attention vector, and σ represents the activation function. The node
features are updated by aggregating edge features using attention coefficients.
The updated node features are then also combined with the previous layer’s node
features using a residual concatenation, thereby indirectly fusing node-to-node
features:

xl
i = σ (We · MEAN ({αikek,∀k ∈ Ei})) ∥ xl−1

i . (2)
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The node-to-edge feature fusion is performed simultaneously. Edge features
are updated by aggregating the features of the two connecting nodes, also fol-
lowed by residual feature concatenation. For edge ek, which connects nodes vi
and vj , the update rule is:

elk = MEAN
(
xl−1
i ,xl−1

j

)
∥ el−1

k . (3)

Bidirectional Cross-attention Mechanism Having extracted the two graph
embeddings from functional and structural encoders, GRAF further employs
a cross-attention mechanism to integrate them. For integrating node embed-
dings Xf ,Xs ∈ RNv×d, we establish two symmetric attention modules: (1)
Structure-Guided Functional Refinement and (2) Function-Guided Structural Re-
finement. In Structure-Guided Functional Refinement module, SCN embeddings
act as queries, while FCN embeddings provide keys and values, resulting in
Zfs = softmax

(
QsKf⊤

√
d

)
Vf . By contrast, in Function-Guided Structural Re-

finement module, Zsf obtained from FCN embeddings act as queries while SCN
embeddings provide keys and values. This mutual refinement not only enables
the SCN embeddings to impose anatomical constraints on the FCN embeddings
but also lets the FCN embeddings introduce dynamic functional context into the
SCN embeddings, resulting in well-integrated embeddings:

Z = [Zfs ∥ Zsf ] ∈ RNv×2d. (4)

Decoder The graph reconstruction decoder hω predicts the existence of masked
edges through,

hω(zi, zj) = Sigmoid(MLP(zi ◦ zj)), (5)

where the element-wise product ◦ captures correlations among node embeddings
(zi, zj), and MLPs are incorporated to capture the nonlinearity in reconstructing
FCNs and SCNs respectively from the same integrated embeddings, with the
sigmoid normalization outputting probabilistic predictions ∈ [0, 1].

Learning objective In stage I, GRAF targets to extract integrated embeddings
to reconstruct both FCNs and SCNs. To achieve this, it employs binary cross-
entropy to measure the model capacity in recovering the masked edges:

L = −

 1

|E+|
∑

(i,j)∈E+

log hω(zi, zj) +
1

|E−|
∑

(i′,j′)∈E−

log(1− hω(zi′ , zj′))

 , (6)

where E+ denotes the edges in Gmask that have been masked out, E− denotes
uniformly sampled negative edges (non-existent connections). E+ and E− ensure
a balanced objective, which guarantees accurate reconstruction of masked edges
without introducing false-positive connections.
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2.3 Aβ-PET Pattern Prediction

As depicted in Fig. 1 (b), after pre-training, GRAF utilizes the graph fusion
architecture to process the complete FCNs Gf and SCNs Gs. The integrated
embeddings Z may not reveal the pathological information of AD during pre-
training. To adapt the model for this downstream task, we further fine-tune the
encoders and then train a Regressor (lightweight MLP) to map the integrated
embeddings to regional Aβ-PET SUVRs. Mean squared error (MSE) between
predicted and observed SUVRs across ROIs is employed to govern model fine-
tuning.

3 Experiments and Results

3.1 Datasets and Preprocessing

We validate our framework on the in-house Huashan [2] dataset (524 subjects)
with paired fMRI, dMRI, and PET data (435 subjects, with 194 Aβ positive,
285 Aβ negative and 45 unlabeled cases). All MRI data were acquired on a 3.0T
Siemens Prisma scanner. The Schaefer atlas (100 ROIs) [16] is co-registered
to each individual space using the T1-weighted MRI brain template. The rs-
fMRI data is processed using ANTs [19] and DPARSF [22]. The dMRI data is
processed using FSL [3], ANTs [19], and MRtrix3 [18], with SCNs construction
using SIFT2-weighted streamline counts. PET data underwent partial volume
correction using the PET Unified Pipeline [14], where SUVRs are calculated by
normalizing the target region SUV to the reference cerebellar values. Regional
SUVRs are averaged within each ROI defined by the same Schaefer atlas.

3.2 Experimental Settings and Evaluation Metrics

During training the encoders, we employ the Adam optimizer with a learning
rate of 5 × 10−4 for 2, 000 epochs. To fully extract the topological attributes,
the graph masking strategy is updated every 100 epochs (batch size = 32, mask
ratio = 0.4). In the Aβ-PET pattern prediction stage of GRAF and all SOTA
competing methods, we reduce the learning rate to 5 × 10−5, using the Adam
optimizer with weight decay set to 10−4, for a maximum of 500 epochs (batch size
= 32). Comprehensive hyperparameter tuning preceded these settings, including
optimizer selection (Adam vs. SGD), learning rates (10−3 to 10−5; 10 equidistant
trials), weight decay (10−4 to 10−6; 10 equidistant trials), and the number of
layers per block.

We compare our proposed method with six SOTA methods, such as the sin-
gle modality GCN [24], GAT [20], and BrainGNN [6] using simple concatenation
fusion strategy, as well as multimodal graph fusion methods, SCP-GCN [8], M-
GNN [9], and Cross-GNN [23], where single-modality models specifically bench-
mark our dual-graph fusion approach while multimodal methods represented
contemporary comparators. All methods employ the same Aβ-PET pattern re-
gression module as GRAF.
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Fig. 2. Qualitative comparison results of regional Aβ-PET pattern prediction. The
ground-truth, prediction, and error maps are shown for Aβ-positive and Aβ-negative
subjects, respectively. The mean MAE values for these error maps of the Aβ positive
subject are: 0.1210 (GCN), 0.2232 (GAT), 0.1219 (BrainGNN), 0.1156 (SCP-GCN),
0.1167 (M-GCN), 0.1190 (Cross-GCN), and 0.0816 (Proposed), respectively. Sim-
ilar metrics for the Aβ negative subject are 0.0907 (GCN), 0.1040 (GAT), 0.0935
(BrainGNN), 0.1832 (SCP-GCN), 0.0689 (M-GCN), 0.0797 (Cross-GCN), and 0.0492
(Proposed).

All models are evaluated via 5-fold cross-validation. For evaluation, graph
reconstruction was assessed by accuracy (ACC), sensitivity (SEN), specificity
(SPE), and the area under the receiver operating characteristic curve (AUC),
while the quality of generated Aβ-PET patterns is quantified through MSE,
mean absolute error (MAE) and mean absolute percentage error (MAPE) against
the real patterns.

3.3 Qualitative and Quantitative Results

SOTA Comparisons During pre-training, GRAF recovers edges achieving
AUC as high as 0.88, and SEN, SPE, ACC as high as 0.78 for both FCNs
and SCNs. We further fine-tune these encoders to predict the regional Aβ-
PET patterns. Table 1 presents the Aβ-PET pattern prediction results, with

Table 1. Quantitative comparison results (mean ± standard deviation) of regional
Aβ-PET pattern prediction.

Method MSE ↓ MAE ↓ MAPE ↓

Concat fusion
GCN 0.0441 ± 0.0412 0.1635 ± 0.0791 0.1356 ± 0.0655
GAT 0.0449 ± 0.0544 0.1638 ± 0.0997 0.1351 ± 0.0810

BrainGNN 0.0455 ± 0.0582 0.1614 ± 0.1009 0.1237 ± 0.0604

Intrinsic fusion

SCP-GCN 0.0571 ± 0.0602 0.1919 ± 0.1019 0.1479 ± 0.0625
M-GCN 0.0442 ± 0.0643 0.1581 ± 0.1023 0.1222 ± 0.0653

Cross-GNN 0.0398 ± 0.0517 0.1502 ± 0.0941 0.1154 ± 0.0566
Proposed 0.0211 ± 0.0155 0.1156 ± 0.0464 0.0960 ± 0.0367
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Fig. 3. Ablation study regarding each key component of our GRAF. ∗ denotes sig-
nificant improvement of GRAF over other ablation models, as determined by Mann-
Whitney U Test (∗ : p < 0.05; ∗∗ : p < 0.01; ∗ ∗ ∗ : p < 0.001). The red point stands for
the mean value.

all ROI results averaged across the testing dataset in 5-fold cross-validation.
Those graph-based methods with a simple fusion module, such as GCN, GAT,
and BrainGNN, demonstrate close performance. However, M-GCN, Cross-GNN,
and GRAF, with a specifically designed fusion module, generally exhibit supe-
rior representational capacity. In contrast, SCP-GCN demonstrates inferiority,
which probably stems from its focus on preserving population-level features,
which might overlook features at the individual level. Our proposed GRAF out-
performs all others, achieving significantly lower errors (with p < 0.05), showing a
23.1% relative improvement in MAE over the second-best method, Cross-GNN.
As shown in Fig. 2, we qualitatively demonstrate the ground-truth and pre-
dicted Aβ-PET patterns for carefully selected representative Aβ-negative and
Aβ-positive subjects, who were matched for age and Mini-Mental State Exam-
ination scores. We can see that our proposed GRAF captures the ground-truth
spatial patterns more accurately, especially in the occipital areas (highlighted by
red circles), where competitive methods tend to falsely overestimate Aβ depo-
sition, which is evidenced by higher errors and reflected in the wider color-bar
range.

Ablation Study To assess the efficacy of our proposed modules in GRAF, we
conduct a comprehensive ablation study with various configurations: (1) FCNs
only; (2) SCNs only; (3) Concatenation (fusion via simply concatenating FCN
and SCN features); and (4) Cross-attention (fusion via cross-attention) but in
an end-to-end training manner. Fig. 3 depicts the distribution of errors across
the testing dataset. We can find that the Cross-attention configuration demon-
strates the most improvements over other configurations. Notably, our proposed
GRAF, which employs a two-stage training strategy, outperforms the end-to-
end training strategy, i.e., configuration (4), even it has the same dual-modality
fusion strategy.
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4 Conclusion

We introduce GRAF, a graph reconstruction-aware fusion framework to predict
the regional Aβ-PET patterns using both functional and structural networks. To
the best of our knowledge, GRAF is the first attempt to exploit both functional
and structural networks capturing neural damage that is mostly correlated with
Aβ deposition. The two-stage training paradigm effectively separates feature rep-
resentation from specific downstream tasks, which alleviates the issue of limited
MRI-PET paired data. Furthermore, our node-edge bidirectional information
transfer encoder integrates both node (gray matter) and edge (white matter)
attributes. Both quantitative and qualitative experimental results demonstrate
the high predictive accuracy achieved by GRAF, demonstrating its potential
in characterizing pathological progression in early AD phases. Future work will
address current limitations, including demographic variability, disease stage het-
erogeneity, and data imbalance, through multi-stage pretraining and multitask
learning to enhance GRAF’s generalizability and predictive performance.
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