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Abstract. In MRI-based mental disorder diagnosis, most previous stud-
ies focus on functional connectivity network (FCN) derived from functional
MRI (fMRI). However, the small size of annotated fMRI datasets restricts
its wide application. Meanwhile, structural MRIs (sMRIs), such as 3D
T1-weighted (T1w) MRI, which are commonly used and readily accessible
in clinical settings, are often overlooked. To integrate the complementary
information from both function and structure for improved diagnostic
accuracy, we propose CINP (Contrastive Image-Network Pre-training),
a framework that employs contrastive learning between sMRI and FCN.
During pre-training, we incorporate masked image modeling and network-
image matching to enhance visual representation learning and modality
alignment. Since the CINP facilitates knowledge transfer from FCN to
sMRI, we introduce network prompting. It utilizes only sMRI from sus-
pected patients and a small amount of FCNs from different patient classes
for diagnosing mental disorders, which is practical in real-world clinical
scenario. The competitive performance on three mental disorder diagnosis
tasks demonstrate the effectiveness of the CINP in integrating multimodal
MRI information, as well as the potential of incorporating sMRI into
clinical diagnosis using network prompting.

Keywords: structural MRI · functional connectivity network · mental
disorder diagnosis.

1 Introduction

By detecting the blood-oxygen-level-dependent (BOLD) responses to neural
activity throughout the brain, functional MRI (fMRI) has become the leading
neuroimaging technique for non-invasive study of human brain functions rele-
vant to various behavioral and cognitive traits [20,13]. Recently, fMRI-derived
functional connectivity network (FCN), as a graph architecture with nodes being
brain regions-of-interest (ROIs) and each edge being functional connectivity
(FC) between paired ROIs, has received considerable attention in diagnosis of
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mental disorders [30,3], where FC is in general measured as statistical dependence
between BOLD signals of paired ROIs. So far a significant amount of work has
been dedicated to learning deep and differentiable representations of FCN for
improving diagnostic accuracy, such as graph neural networks (GNNs) [19,28,14],
convolutional neural networks (CNNs) [16], and graph transformer [15].

Despite significant progress, such FCN-based deep learning methods for
mental disorder diagnosis has yet to be widely adopted in real-world clinical
practice. There are two pervasive challenges, i.e., the limited generalizability
due to the insufficient annotated fMRI data volume, and the lack of integration
with anatomical information from the easily obtainable structural MRI (sMRI),
such as 3D T1w MRI. Since the anatomical structure of the brain inherently
constrains its function [21], 3D T1w MRI, which assesses brain anatomy, holds
potential for diagnosing mental disorders. An efficient integration of structural and
functional perspectives can provide a more comprehensive view of neurobiological
abnormalities in mental disorders, leading to better diagnostic precision.

Motivated by the success of contrastive learning on large-scale image-text
pairs [22], efforts in the biomedical domain have focused on pre-training vision-
language models using medical images and their corresponding radiology re-
ports [2]. Beyond images and texts, it is noteworthy that various MRI modalities,
such as sMRI and fMRI, inherently provide contrasting perspectives by offering
structural and functional information about the human brain, respectively. For
example, a bidrectional mapping scheme [31] performed contrastive learning be-
tween diffusion MRI-derived structural connectivity networks and BOLD signals.
F2TNet [12] transferred knowledge from fMRI to sMRI using ROI-level con-
trastive learning, so as to enable accurate phenotypic predictions with sMRI alone.
For Alzheimer’s Disease prediction, Fedorov et al. [10] applied both inter- and
intra-modal contrastive learning between sMRI and fALFF features. However, the
scalability of these studies is somewhat limited by the specific model architecture,
the small amount of data, and/or the coarse representation of features.

In this regard, this paper focuses on scaling contrastive pre-training on suject-
level sMRI and fMRI for mental disorder diagnosis. We collect a large cohort of
4619 paired 3D T1w MRI images and fMRI-derived FCNs for pre-training. The
Contrastive Image-Network Pre-training (CINP) framework (see Fig. 1) is pro-
posed to learn representations of 3D T1w MRI images through FCN supervision
for mental disorder diagnosis tasks. Specifically, paired 3D T1w MRI images and
FCNs are fed into a visual encoder and a network encoder to extract embeddings,
respectively. The cosine similarity matrix between image embeddings and FCN
embeddings is generated to compute image-network contrastive loss. Masked
image modeling and image-network matching are used for better representation
learning and modality alignment. In particular, we develop a network prompting
protocol, which leverages only 3D T1w MRI images from suspected patients and
a small amount of FCNs from different patient classes for diagnosis of mental
disorders. The similarities between the embedding of the 3D T1 MRI image of a
suspected patient and the embeddings of FCNs are calculated. The patient is
assigned to the class where the corresponding FCNs hold the highest similar-
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Fig. 1. The framework of CINP. It primarily consists of a visual encoder, a visual
decoder, and a network encoder.

ity with the image. The effectiveness of CINP is finally demonstrated on three
mental disorder datasets by comparing CINP with FCN-based, sMRI-based, and
multimodal models.

2 Methods

2.1 Contrastive Image-Network Pre-training

As illustrated in Fig. 1, CINP is mainly composed of a visual encoder, a visual
decoder, and a network encoder. For the visual encoder, an 8-layer 3D swin
transformer is constructed and initialized with the weights from [25]. Given an
input 3D T1w MRI image I, we randomly mask 30% of the voxels, resulting
in a masked MRI image I∗. Through the visual encoder, the normalized image
embedding vI and the normalized masked image embedding v∗

I , both with a
dimension of 768, are obtained. The visual decoder, based on the transpose
convolution layer, follows the architecture in [25], utilizing the masked image
embedding v∗

I to reconstruct a volumetric MRI image Î. We adopt brain network
transformer (BNT) [15] as the backbone for the network encoder, where an FCN
N is encoded into a 768-dimensional normalized network embedding wN .

Image-Network Contrastive Learning. Studies have shown that contrastive
learning using image-text pairs can construct a joint semantic space of vision and
language [22]. Therefore, we aim to enhance the representations of 3D T1w MRI
images with FCN supervision through contrastive learning between image-network
pairs. Specifically, given an image-network pair (i.e., a 3D T1w MRI image and
an FCN), we aim to learn a similarity score s(I,N) = vT

I wN , such that positive
pairs (image and network from the same subject) have higher similarity scores,
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while negative pairs (image and network from different subjects) have lower
similarity scores. For each image and network in a batch, the softmax-normalized
image-to-network and network-to-image similarities are calculated as

pink (I) =
exp(s(I,Nk)/τ)∑K
k=1 exp(s(I,Nk)/τ)

and pnik (N) =
exp(s(N, Ik)/τ)∑K
k=1 exp(s(N, Ik)/τ)

, (1)

where the temperature factor τ is a learnable parameter and K denotes the batch
size. Let yin(I) and yni(N) represent the ground-truth similarities of all images
and networks, where positive pairs having a similarity of 1 and negative pairs
having a similarity of 0. Based on the cross entropy H(·, ·), the image-network
contrastive (INC) loss is defined as

LINC =
1

2
E(I,N)∼D

[
H
(
yni(I),pni(I)

)
+H

(
yin(N),pin(N)

)]
. (2)

Masked Image Modeling. Masked image modeling (MIM) aims to learn
robust representations of MRI images. The MIM loss is defined by an L1 loss
between the raw MRI image I and the reconstructed MRI image Î, i.e.,

LMIM = E(I,Î)∼D∥I − Î∥1. (3)

Image-Network Matching. Image-network matching (INM) is a binary clas-
sification task, which predicts whether a given image-network pair is from the
same subject. Specifically, the concatenation of the image embedding vI and the
network embedding wN , denoted as [vI ,wN ], is passed through a fully-connected
layer to output a binary classification probability q. The INM loss is defined as

LINM = E(I,N)∼D [H (zINM, q(I,N))] , (4)

where zINM is the ground-truth label represented by a 2-dimensional one-hot
vector. Moreover, we sample hard negatives as indicated in [18]. To be specific,
in each data batch, the image-network similarity in (1) is used to sample image-
network pairs which do not come from the same subject but own a high similarity
for the INM loss. Finally, the complete pre-training loss of CINP is

L = LINC + αLMIM + βLINM. (5)

2.2 Network prompting

Previous methods employ linear probe or fine-tuning protocols to apply the
pre-trained model to downstream tasks, which require a substantial number of
annotated data and fall short when encountering the prevalent clinical scenario
where fMRI are not routinely collected. To address this challenge, as shown
in Fig. 2, we propose network prompting, inspired by the insight that FCNs
from different subject classes (e.g., health controls and autism spectrum disorder
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Fig. 2. Workflow of network prompting. In this case, the 3D T1w MRI image is
classified as class 2, since the mean of s21, s22, . . . , s2r is the highest average similarity.

patients) exhibit significant group-level differences [32,11]. We also hypothesize
that the pre-trained CINP can measure the similarity between 3D T1w MRI
image embeddings and FCN embeddings in the learned joint semantic space.

Specifically, we obtain a set of network embeddings U = {C1, C2, . . . , Ck}
of k subject classes, each containing n FCNs, i.e, Cl = {wl

1,w
l
2, . . . ,w

l
n} for

l = 1, 2, . . . , k. For each class, we partition the FCNs into r disjoint subsets of equal

size, i.e., Cl = ∪r
i=1Ci

l , where Ci
l∩C

j
l = ∅ for i ≠ j, and |Ci

l | =
|Cl|
r

for i = 1, 2, . . . , r.
The nework embeddings within the same subset are averaged to form r group-
level reference network embeddings: U = {{wl

1,w
l
2, . . . ,w

l
r, }|l = 1, 2, . . . , k},

where wl
i =

1

|Ci
l |
∑

w∈Ci
l
w for i = 1, 2, . . . , r, which help eliminate subject-level

biases. Then, we calculate the similarities between the image embedding v of the
suspected patient’s 3D T1w MRI and the reference network embeddings, denoted
as S = {{sl1, sl2, . . . , slr}|l = 1, 2, · · · , k}, where sli = vTwl

i for i = 1, 2, . . . , r.
Based on the average similarities of the image embedding with each class’s FCNs

S = {s1, s2, ..., sk}, where sl =
1

r

∑r
i=1 s

l
i for l = 1, 2, . . . , k, we assign the patient

to the class k′ with the highest average similarity, i.e., sk
′
= max(s1, s2, . . . , sk).

3 Experiments

3.1 Experimental Settings

Datasets and Preprocessing. We collected several publicly available datasets
where subjects have both 3D T1w MRI and resting-state fMRI (rs-fMRI) images.
As a result, the large cohort for pre-training included four datasets (i.e., HBN [1],
HCP [27], QTIM [23], and CNP [5]), while three mental disorder datasets (i.e.,
ABIDE [8], ADHD [7], and SRPBS [24]) were used for evaluation. We listed these
datasets with basic demographic information in Table 1. Using the fMRIPrep [9]
preprocessing pipeline, which is robust to variations in scan acquisition protocols,
all MRI images were preprocessed and had a voxel size of 2×2×2 mm3. To derive
FCNs from rs-fMRI on the automated anatomical labelling (AAL) atlas [26],
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Table 1. Demographic information of 7 datasets used in this study. (HC: Health Control,
ASD: Autism Spectrum Disorder, ADHD: Attention Deficit Hyperactivity Disorder,
MDD: Major Depression Disorder, SCZ: Schizophrenia)

Name Usage Size Gender (M/F) Age (mean±sd) Samples

HBN [1]
Pre-training

2254 1455/799 10.73±3.39 -
HCP [27] 1080 495/585 (20-40) -
QTIM [23] 1024 388/636 20.71±4.00 -
CNP [5] 261 152/109 33.29±9.29 -

ABIDE [8]
Evaluation

855 719/136 16.92±7.91 395 ASD, 460 HC
ADHD [7] 872 538/334 11.98±3.34 325 ADHD, 547 HC
SRPBS [24] 1397 799/598 38.37±13.65 125 ASD, 255 MDD, 147 SCZ,

783 HC, 87 Others

which contains 116 ROIs, we calculated FC as Pearson’s correlation between
BOLD signals of paired ROIs. The corresponding row for each node in the FCN
matrix was treated as the node features.

Implementation Details. The CINP pre-training model was implemented
with PyTorch 1.13.1 and MONAI 1.2.0. For pre-training, we utilized the Adam
optimizer with an initial learning rate of 10−5 and a weight decay of 10−5. The
cosine annealing schedule was applied for the learning rate decreasing to 10−6.
The batch size was set to 256. The pre-training was performed on 8 NVIDIA A800
GPUs for 400 epochs, taking approximately 100 hours. Since the importance
and scale of three losses are comparable, we set α = β = 1 in (5) based on the
validation set performance.

During the pre-training, the input 3D T1w MRI images were randomly
augmented (i.e., Gaussian noise addition, flipping, intensity scaling and shifting)
to learn robust representations. After augmentation, the volumes of all 3D T1
MRI images were resized to 96× 96× 96. We evaluated CINP using the linear
probe protocol, where embeddings from the pre-trained model were used as input
to a support vector machine (SVM) classifier. Notably, only the embeddings of
3D T1-weighted MRI images generated by CINP were provided to the SVM in
our experiments.

Performance Evaluation. The diagnosis of ASD and ADHD were treated as
binary classification tasks on the ABIDE and ADHD datasets, respectively, and
were evaluated using accuracy (ACC), area under the ROC curve (AUC), and
Matthews correlation coefficient (MCC). For the SRPBS dataset, HC, ASD, MDD,
SCZ, and other mental disorders were classified, where ACC and MCC were used
for evaluation. For linear probe and fine-tuning protocols, we randomly divided
the evaluation dataset into training (70%), validation (10%), and testing (20%)
sets. Note that the network prompting protocol used the same data partitioning,
but sampled only 10% of FCNs from the training set to simulate a low-data
scenario, while 3D T1w MRI images in the testing set were evaluated.
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Table 2. Classification results of different models on three mental disorder datasets.

Type Method Training ABIDE ADHD SRPBS

ACC AUC MCC ACC AUC MCC ACC MCC

FCN
based

GCN [17]
From

scratch

61.64 64.30 21.87 60.78 59.60 13.16 53.21 7.91
BrainGNN [19] 55.79 58.67 9.57 57.23 55.31 12.26 53.08 18.75
BrainNetCNN [16] 62.92 68.70 26.12 63.31 63.35 19.57 51.43 19.99
MHAHGEL [28] 63.51 68.09 29.19 64.11 62.00 18.41 56.58 20.22
BNT [15] 65.96 72.00 31.80 63.42 64.47 19.86 57.08 29.07

sMRI
based

MedicalNet [6] Linear
probe

53.92 52.37 3.76 63.54 64.74 10.25 55.69 13.32
PRCLv2 [33] 55.20 51.30 8.93 66.18 67.47 22.91 56.26 13.76
Swin-UNETR [25] 55.79 54.17 9.50 66.63 67.58 23.72 56.33 14.39

MedicalNet [6] Fine
tuning

54.39 51.25 4.56 65.71 68.38 24.09 58.57 14.10
PRCLv2 [33] 54.60 59.65 14.19 67.82 68.23 25.00 57.50 11.74
Swin-UNETR [25] 57.31 59.83 14.53 67.39 68.39 26.33 57.14 14.91

Multi
modal

Cross-GNN [29] From
scratch

61.40 62.43 23.04 65.52 66.14 24.74 60.22 21.09
MultiViT [4] 59.40 60.60 18.20 64.38 65.75 23.03 63.08 22.18
CAMF [34] 59.05 59.55 15.44 66.67 71.56 24.21 61.29 22.10

- CINP (Ours) Linear
probe 62.86 62.75 19.22 69.08 71.00 25.33 64.29 22.26

3.2 Quantitative Results

Comparision with Baseline Models. We compared our CINP using the linear
probe protocol with FCN-based, sMRI-based, and multimodal models. Based
on the implementation in the corresponding papers, four FCN-based and three
multimodal models were deployed and trained from scratch on the three mental
disorder datasets separately. For three sMRI-based models using the linear probe
protocol, we used the pre-trained weights provided in their respective papers.
The feature maps from the last layer of these models were flattened, reshaped,
and fed into an SVM classifier for classification. We also fine-tuned sMRI-based
models for 10 epochs and presented their performances.

The FCN Supervision Enhanced the Embeddings of 3D T1 MRI Images. As
shown in Table 2, our CINP achieved the highest ACC on the ADHD and SRPBS
datasets. Compared to the best results from sMRI-based and multimodal models,
our CINP improved the ACC by 1.46%, 1.26%, and 1.21% on the ABIDE, ADHD,
and SRPBS datasets, respectively. It indicates that by conducting contrastive
learning between 3D T1 MRI images and FCNs, their mutually complementary
information can be fully captured, benefitting mental disorder diagnosis.

The Diagnostic Efficacy of MRI Modalities Differed by Mental Disorder. Although
our CINP outperformed all competing models on the ADHD and SRPBS datasets,
it did not achieve state-of-the-art performance on the ABIDE dataset. Meanwhile,
FCN-based models performed worse than all other types of models on the ADHD
dataset. This may indicates that sMRI is more effective in diagnosing ADHD,
while ASD identification may require more information about brain function,
even though the knowledge has been transferred from FCN to sMRI during
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Table 3. Classification results of the network prompting protocol with different numbers
of group-level reference networks on two mental disorder datasets.

Reference Network
Number (r)

ABIDE ADHD

ACC AUC MCC ACC AUC MCC

1 56.45 58.74 15.09 62.27 61.78 21.70
5 62.56 61.34 25.84 64.15 65.33 27.11
10 57.24 56.10 13.97 64.66 63.48 29.16

Table 4. Classification results of CINP with different combinations of pre-training
objective functions on three mental disorder datasets.

Loss ABIDE ADHD SRPBS
LINC LMIM LINM ACC AUC MCC ACC AUC MCC ACC MCC

✓ ✗ ✗ 58.57 59.94 17.94 62.86 61.20 11.68 58.93 13.64
✓ ✓ ✗ 60.00 57.00 16.95 66.23 68.57 20.67 60.71 17.04
✓ ✗ ✓ 61.42 60.13 21.52 63.37 64.69 17.50 61.43 16.90
✓ ✓ ✓ 62.86 62.75 19.22 69.08 71.00 25.33 64.29 22.26

contrastive pre-training. Notably, on the SRPBS dataset, which included multiple
mental disorders, multimodal models and CINP performed better, highlighting
the importance of integrating sMRI and FCN for mental disorder subtyping.

Evaluation of Network Prompting. We evaluated the proposed network
prompting protocol with different numbers of group-level reference networks
(r = 1, 5, 10) on the ABIDE and ADHD datasets. As shown in Table 3, using
only 10% of the FCNs in the training set of evaluation datasets, the CINP with
the network prompting protocol achieved the best MCC (29.16%) on the ADHD
dataset and outperformed all the sMRI-based and multimodal models on the
ABIDE dataset. This demonstrates the feasibility of pre-training CINP with
large-scale image-network pairs through contrastive learning and subsequently
leveraging it with the network prompting protocol for mental disorder diagnosis,
even when only a small number of FCNs from diagnosed patients are available.

3.3 Ablation Study

We conducted ablation study on the CINP variants, which were pre-trained with
different combinations of the three objective functions in Section 2.1. As shown
in Table 4, both the MIM and INM losses improved the performance of CINP,
with the best performance achieved when all three objective functions were used.
Specifically, on the ABIDE dataset, the MIM and INM losses improved the ACC
by 1.44% and 2.86%, respectively; on the ADHD dataset, the improvements were
5.71% and 2.85%. Since the MIM loss primarily enhanced the representations
of sMRI and the INM loss mainly transferred knowledge from FCNs to sMRI,
this further implies that the diagnostic efficacy of MRI modalities varies across
mental disorders from the objective function perspective.
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4 Conclusion

In this paper, we proposed CINP, a framework that leverages contrastive learning
between 3D T1 MRI and FCN. During pre-training, image-network contrastive
loss, masked image modeling loss, and network-image matching loss were used
to enhance the representations of 3D T1 MRI images with FCN supervision for
downstream mental disorder diagnosis tasks. With the pre-trained CINP, we
introduced network prompting to utilize only sMRI from suspected patients and
a small amount of FCNs from different patient classes for diagnosing mental
disorders. Extensive experiments on three mental disorder classification tasks
demonstrated the effectiveness of CINP, which sheds light on the potential of
incorporating sMRI into clinical diagnosis.
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