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Abstract. Zebrafish embryos are a valuable model for drug discov-
ery due to their optical transparency and genetic similarity to humans.
However, current evaluations rely on manual inspection, which is costly
and labor-intensive. While machine learning offers automation potential,
progress is limited by the lack of comprehensive datasets. To address
this, we introduce a large-scale dataset of high-resolution microscopic
image sequences capturing zebrafish embryonic development under both
control conditions and exposure to compounds (3,4-dichloroaniline). This
dataset, with expert annotations at fine-grained temporal levels, supports
two benchmarking tasks: (1) fertility classification, assessing zebrafish
egg viability (130,368 images), and (2) toxicity assessment, detecting
malformations induced by toxic exposure over time (55,296 images).
Alongside the dataset, we present the first transformer-based baseline
model that integrates spatiotemporal features to predict developmental
abnormalities at early stages. Experimental results present the model’s
effectiveness, achieving 98% accuracy in fertility classification and 92%
in toxicity assessment. These findings underscore the potential of auto-
mated approaches to enhance zebrafish-based toxicity analysis. Dataset
and code will be available at: https://github.coml
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1 Introduction

Zebrafish embryos have emerged as a powerful model organism in drug discov-
ery due to its genomic similarity to humans [28/TT]. Their optical transparency
further enables high-throughput imaging, allowing experts to conduct drug dis-
covery and investigate the effect of novel compounds at scale, which paves a
new way for more reliable and cost-effective analyzes [12]. However, evaluating
pharmacological interventions on the development of zebrafish embryos remains
a labor intensive task. Unlike classical classification tasks, the challenge arises
from accurately detecting subtle developmental abnormalities that manifest over
time in image sequences [I7], which often relies on human expertise [18].
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Fig. 1. llustration of model predictions for two developmental sequences. The red line
denotes predicted anomalous development, while the green line represents predicted
normal development.

Given this challenge, significant early efforts have focused on automating
toxicity detection using zebrafish embryos. Traditional approaches often rely on
static images, failing to capture the temporal resolution necessary for analyz-
ing dynamic developmental processes [I3]. More recently, the machine learning
(ML) community has explored various methods to incorporate spatiotemporal
information in fields such as anomaly detection [7J27] and video classification [9].
However, unlike these applications, clinical studies involving zebrafish embryos
lack comprehensive datasets to support such advancements [I7]. This scarcity
has hindered the development of an end-to-end solution for accurate toxicity
detection, highlighting a critical gap in the field.

To address this, we introduce a comprehensive large-scale dataset of high-
definition images capturing the temporal progression of zebrafish embryonic de-
velopment. The dataset is carefully collected under control conditions and ex-
posure to compound 3,4-dichloroaniline, resulting in around 20K high-quality
images with per-frame annotations. The dataset enables two key tasks: (1) fertil-
ity detection, which assesses zebrafish egg viability, and (2) toxicity assessment,
which identifies developmental abnormalities by toxic exposure.

Beyond the dataset, we also introduce the first transformer-based baseline
model designed to integrate spatiotemporal relationships for the task. It explores
the modern transformer architectures [23] to model the correlation between dif-
ferent image patches across both spatial and temporal dimensions. The proposed
model achieves impressive accuracy with 98% accuracy on fertility detection and
92% accuracy on toxicity assessment, highlighting the great potential toward au-
tomatic drug discovery. We summarize our three contributions as follows.

— We propose a dataset of 130,368 images for fertility detection and 55,296 im-
ages for toxicity assessment, with expert temporal annotations, of zebrafish
embryonic development under pharmacological interventions.
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— We introduce a transformer-based model that effectively processes spatio-
temporal features in image sequences, achieving high accuracy in detec-
tion (98% on fertility detection and 92% on toxicity assessment). The fine
grained temporal annotations enable rigorous benchmarking of models for
early anomaly detection, for improving intervention studies.

2 Related Work

Utilizing zebrafish as a model organism: zebrafish have become an indis-
pensable model in biomedical research due to their rapid embryonic development,
optical transparency, and remarkable genomic similarity to humans [28/T1]. In
addition to these foundational studies, recent reviews have highlighted how ad-
vances in high-throughput imaging and automated data analysis further enhance
the zebrafish’s role in toxicity testing [6]. Approaches that integrate time-resolved
gene expression data into toxicity models have underscored the significance of
using zebrafish by revealing insights into the molecular underpinnings of toxic re-
sponses in their embryos [19]. These advancements further justify the continued
inclusion of zebrafish in large-scale screening initiatives, like the United States
Environmental Protection Agency’s Toxicology Testing Phase I [16] and Phase
IT screens [21].

High-throughput imaging and annotation: High-definition imaging
platforms have been used to capture zebrafish development at high resolu-
tion [I2]. A widely used image dataset for analyzing toxicity in zebrafish is
ToxCast [16]. The dataset includes 309 unique zebrafish embryos, each imaged
once at 6 days post-fertilization and annotated for viability, hatching status,
and malformations. However, this dataset lacks both the temporal span and the
scale required to train large-scale models. A larger dataset, comprising 203,520
zebrafish embryos, is presented in [26]. This dataset contains video recordings
captured for 15 minutes, annotated for behavioral metrics. Nevertheless, the
dataset lacks the temporal annotation for automating the early detection of de-
velopmental anomalies. Our dataset gives up to 8 hours (fertility) / 48 hours
(toxicity) monitoring data and expert frame annotation enabling early detection
benhmarking. Mikut et al.[I3] provides a comprehensive survey of the proposed
datasets for analyzing of zebrafish development including those annotated for cell
tracking and heartbeat detection. There remains a need for a large-scale dataset
focused on early development tracking, with temporal annotation of anomalous
behavior.

Automating developmental toxicity detection: Various methods have
been developed to automate toxicity detection using these datasets. Earlier meth-
ods employed targeted parameters such as velocity, distance traveled, and rule-
based scripts [T0J2]. Key tasks for analyzing drug toxicity have been image-based
heartbeat detection [15]20] and movement detection from videos [3]. While these
tasks provide valuable information, they do not replace comprehensive temporal
analyses of full-image data, for accurate detection of developmental anomalies.
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Earlier automation methods trained machine learning models, such as ran-
domized trees, on pixel-based image descriptors [I]. Later approaches lever-
aged Convolutional Neural Networks for robust developmental anomaly detec-
tion [T7/425122]. Although transformer models [5] have been applied to zebrafish
data [824] a pipeline for the detection of toxicity in the early stages of develop-
ment has not yet been proposed. We bridge this gap by proposing a large-scale
dataset with fine-grained annotations and by training an end-to-end transformer-
based model for early toxicity detection.

3 Dataset

The dataset presented here was collected to develop machine learning models
that enable drug discovery using zebrafish as a model organism. Hence, we for-
mulated two key tasks: (1) fertility detection, to assess egg viability, and (2)
toxicity assessment, to identify developmental malformations. Eggs were pro-
duced through the natural spawning of zebrafish and individually allocated into
wells of a standard 96-well plate. This experimental setup allows the study of
the effects of various test substances at different concentrations, with appropriate
control conditions. We use the reference compound 3,4-dichloroaniline to study
its effects on development and to train the machine learning model. Employing
this well-characterized compound establishes a standardized baseline, ensuring
that our dataset remains broadly applicable.

Fertility detection Task: Data for the task were collected over 14 experi-
mental runs with no added substance. In each run, every well (i.e., each egg) was
imaged sequentially over an 8-hour period. Images were acquired at 5-minute in-
tervals, resulting in 97 images per sequence. In total, the fertility classification
dataset comprises (% + 1) x14x96 = 130, 368 images, that is 1344 sequences.

Each image in the sequence is annotated with one of three labels: ‘alive’,
‘unsure’, or ‘unfertilized’. Additionally, a flipping point is annotated to mark the
transition from an ‘unsure’ state to one of the definitive outcomes. The label of
the 97*" image is the sequence label. The final dataset exhibits a 5 : 4 ratio for
the two definitive sequence labels (‘alive’ and ‘unfertilized’).

Toxicity Assessment Task: For toxicity assessment, the focus is on de-
tecting the adverse effects of the toxic reference compound, 3,4-dichloroaniline,
on zebrafish embryonic development. Each image is annotated, enabling bench-
marking of models for the early detection of developmental abnormalities. Since
the task requires long-term monitoring, each well on the 96-well plate is ob-
served over a 48-hour period, with images captured at 15-minute intervals. Con-
sequently, each sequence contains 192 images (4 images per hour over 48 hours).
With data collected from three such runs, the toxicity assessment dataset com-
prises 192 x 96 x 3 = 55 296 images, corresponding to 288 sequences. Each image
is analyzed and annotated with one of the following labels: ‘alive’, ‘sublethal
effect’, ‘lethal effect’, or ‘not fertilized’, allowing for fine-grained analysis of toxic
effects over time. Additionally, the sequence is labeled as ‘alive’ or ‘anomalous’
based on the overall outcome.
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Fig.2. Overview of the model architecture. Input images are divided into non-
overlapping patches, encoded with patch and temporal embeddings, then processed
through a transformer encoder and an MLP classification head.

Data collection, accessibility and ethical considerations: All imaging
was performed using a high-definition microscope that captures images at a reso-
lution of 1344 x 820 pixels. The experimental setup ensured that each well main-
tained consistent lighting and focus conditions. Expert annotators provided the
labels based on standardized guidelines, with quality control checks performed to
ensure annotation consistency and data integrity. The complete dataset, along
with detailed documentation on devices used and annotation guidelines, will
be made publicly available upon publication of this manuscript. As zebrafish
embryos are widely used as a model organism and do not require invasive pro-
cedures, ethics approval was not necessary for this study.

4 Model

The model is designed to process sequences of microscopic images and capture
the dynamic development of zebrafish embryos. Each sequence consists of IV
images, each representing a snapshot of a zebrafish embryo captured at uniform
time intervals. These sequences are used to train a transformer-based model that
leverages spatiotemporal features to predict developmental abnormalities.

Let X = {x1,Xa,...,Xx} represent an image sequence, where x; € RZxWx¢
is the ¢-th image in the sequence, with H, W, and C denoting the height, width,
and number of channels of the image, respectively. Although the original images
have a resolution of 1344 x 820 we resize them to H = 224, W = 224 (C = 3).

Each image x; captures the developmental state of a zebrafish larva at time ¢.
We employ a Vision Transformer (ViT) [5] architecture adapted for spatiotem-
poral processing. The model processes each image x; along with an encoding
for the time instance t. For each image x;, the embedding layer combines three
components (Figure [2)):
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— Patch Embeddings: Each image x; is divided into non-overlapping patches of
size P x P. These patches are linearly projected into a d-dimensional space,
where d is the hidden dimension of the transformer. Let P, € RM*4 represent
the patch embeddings for the ¢-th image, where M = & ;2W is the number
of patches per image. We choose P = 16 and d = 768 in our experiments,
resulting in M = 196 patches, each embedded as a 768-dimensional vector.

— To encode the spatial location of each patch within the image, a learnable
spatial positional embedding Egpatial € RM*d is added to the patch embed-
dings. This ensures that the model can distinguish between patches based
on their spatial positions.

— A class token (c)—a learnable embedding that aggregates global information
for classification—is prepended to the patch tokens. To encode the temporal
position of each image in the sequence, a learnable temporal positional em-
bedding is added to the class token. This vector is shared across all patches
of x¢: Etemporal € R<. Post training the model has N unique tokens one for
each time step. That is, for a given, x; the temporal token is assigned a
unique embedding based on the value of ¢.

The final embedding z for the ¢-th image is computed as:

Zy — concat (C + Etemporal [t]a COHC&t,f\il (PEZ) + E(Z) )) (1>

spatial

where P,(f) is the embedding of the i-th patch of image x;, Eg;)atial is the
corresponding spatial positional embedding, ¢ is the class token, and Etemporal [t]
is the temporal embedding for time step t. z; € RM+1xd j5 the representation
of image x;, enriched with spatio-temporal information.

Transformer encoder and classification head: The transformer encoder
consists of a stack of identical blocks. Each block first applies layer normalization
to the input tokens and then computes multi-head self-attention, which captures
global contextual relationships among the tokens. The resulting output is added
to the original input via a residual connection. Next, the block processes the
tokens with a feed-forward network (again with layer normalization and residual
connections), further refining their representations. This sequence of operations
enables the encoder to iteratively build a rich, global representation of the spatio-
temporally enriched input tokens. After processing through 12 such blocks, the
encoder outputs h-a tensor of the shape R(M+1)x768

The classification head is a linear layer that processes the representation vec-
tor h to predict the developmental outcome. The output is passed through an ac-
tivation (A: Sigmoid for fertility, softmax for toxicity), yielding y = A(Wh+b),
where W € R°*? and b € R® are learnable parameters, and y € R® represents
the predicted probabilities for the o classes. For the task of fertility detection,
we set 0o = 1 with Sigmoid activation, where the value of the prediction being
0 indicates ‘unfertilized’ and 1 indicates ‘fertilized’. Thus, the prediction for an
image x; (denoted by y¢) is the probability of the sample being fertile at time ¢
(Figure [1]). For task (2), toxicity assessment, we set o = 2: corresponding to the
two classes ‘alive’ and ‘anomalous’. We employ softmax activation with o = 2 to
enable future integration of additional classes with fine grained sublethal effects.
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Fig. 3. The figure shows, from left to right, first examples of model output for random
20 test sequences. The second figure shows the prediction accuracy changing with time
and the third plot shows the confidence calibration of the model.

This baseline model enables image-level prediction while incorporating tem-
poral information. During inference, the model processes one image at a time
and makes predictions based on both the image content and its temporal index.

5 Experiments and Results

In this section, we present the experimental evaluation of our transformer-based
model on two critical tasks: fertility detection and toxicity assessment. We de-
scribe the experimental setup, outline the evaluation, and report the results.

Training strategy: We adopt the hyperparameters from a previous state-of-
the-art anomaly detection model [14]. For both datasets and tasks, we train the
model using the Adam optimizer with a learning rate of 4 x 10~*, weight decay
of 5x 107°, and a dropout rate of 0.2. The training process involves minimizing
(1) binary (for fertility detection) and (2) categorical (for toxicity assessment)
cross-entropy loss over the labeled dataset.

Results and discussion: For the fertility detection task, our dataset com-
prises 130,368 images, which form 1344 sequences. We split the dataset into
training, validation, and test sets in a 70 : 15 : 15 ratio, yielding 942 training
sequences and 201 sequences each for validation and testing. The model predicts
a probability y,; for each image, indicating the likelihood that the sample is fer-
tile. The validation set is used to select the best model during training and to
determine the optimal kernel size for smoothing the sequence of predictions. We
found that a sliding window size of 13 is optimal for a moving average filter.

For evaluating image-level prediction (i.e., the accuracy of y;) we consider
only test images with definitive labels—either ‘fertile’ or ‘unfertilized’—and ex-
clude those labeled ‘unsure’. The resulting binary classification accuracy is 89.23
%. Future models can improve on this and leverage the fine grained classes. How-
ever, to evaluate the capability of the model to automate the detection of viable
samples, we need to evaluate the accuracy of predicting the state of an entire
zebrafish embryo (i,e,. the whole sequence). For this we evaluate (a) the accuracy
at a specific time ¢, and (b) the accuracy when the confidence (cy) first reaches
a predefined threshold value. The confidence ¢y is measured as 2 x |y, — 0.5].
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Fig. 4. The figure (left) shows the comparison of the accuracy of human prediction
to that of the model prediction at all time instances. The second figure shows the
confidence in prediction varying over time for samples of the two classes.

Note that y; can be understood as the probability of the sample being alive at
time t. Figure [3illustrates sample outputs along with both analyses.

Our analysis indicates that achieving a maximum accuracy of 98% requires
waiting for 41 time steps in the sequence, which corresponds to 41 X 5 minutes:
"3.4 hours. Although this 3.4-hour duration falls within the typical 8-hour lab
session, it is substantially longer than the 1.3 hours in which human experts
can accurately predict the label. Furthermore, figure also shows how the model
output (predicted probability) is calibrated with the performance of the model.
Though these findings show the utility of our dataset and model in efficiently
automating the detection of viable samples (a labor-intensive task), reducing the
required detection time remains an open challenge.

For the second task-toxicity detection-we have a total of 55,296 images, con-
stituting 288 sequences. Among these, 143 sequences exhibit normal development
while 112 sequences display developmental anomalies due to toxic exposure (the
remaining samples are not fertile). The train test validation splits follow the
same ratio as the previous task. The model’s prediction is obtained by taking
the argmaz over the output logits for the 2 classes and the corresponding logit
is the confidence in prediction.

Experts observe the samples sequentially, assigning a label of ‘alive’ to early
images. Since the true sequence label is provided at the end of each sequence,
we can evaluate how experts can accurately predict early labels. The results
show that the accuracy of model prediction also improves with time. Figure []
shows the comparison of the accuracy of human prediction to that of the model
prediction at all time instances. There is a clear scope for improvement for the
model to match human performance of early accurate prediction (best perfor-
mance is 92%). The figure also shows the confidence in prediction which can be
dynamically thresholded to make a decision at each time instance. The thresh-
old for each time step can be optimized with the validation data. These findings
demonstrate that while both human experts and our model improve in accuracy
over time, there remains significant potential to refine the automated approach
for earlier and more precise toxicity detection.
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6 Conclusion

In conclusion, our work presents a comprehensive framework for automating de-
velopmental toxicity screening in zebrafish embryos, bridging a critical gap in
current drug discovery pipelines. By introducing a large-scale, finely annotated
dataset and a transformer-based model, we demonstrate the feasibility of ro-
bust, automated early detection of developmental toxicity with high accuracy.
We believe, the annotated dataset will be a valuable benchmark for biomed-
ical research. Better models can be developed on this dataset for early-stage
detection which is currently at around 3.4 hours after development.
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