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Abstract. Pre-trained visual-language (V-L) models have demonstrated
impressive generalization capabilities on various downstream tasks, yet
their performance is significantly influenced by the input text prompts.
Previous studies (e.g., CoPrompt) have attempted to use detailed de-
scriptions generated by LLM to assist model learning. For example, while
a coarse-grained prompt like "A photo of Debris." may be less informa-
tive, a fine-grained description such as "Debris consists of dead cells and
matrix fragments." provides additional context, resulting in enhanced
model performance. However, existing methods generally lack the sen-
sitivity to capture the subtle semantic differences that are crucial for
accurately classifying pathology images. To tackle this challenge, we intro-
duce PathoPrompt, a framework that leverages Cross-Granular Semantic
Alignment to improve sensitivity to refine the model’s ability to capture
subtle semantic variations in pathology image classification. Specifically,
we introduce token-level fine-grained alignment, allowing the model to
capture subtle differences that are crucial for accurate pathology image
classification. Further, Cross-Granular Semantic Distillation improves the
model’s ability to generalize by filtering out irrelevant information from
both coarse and fine-grained prompts. Moreover, PathoPrompt employs
a prototype-based cross-modal separation mechanism, promoting distinct
class boundaries by separating image and text semantics for more effec-
tive multi-modal representation learning. Experiments on five pathology
datasets and three different task types demonstrate that our method
achieves superior performance compared to previous methods.

1 Introduction

Recent advancements in pre-trained vision-language (V-L) models, such as
CLIP[9] and ALIGN[3], have demonstrated impressive capabilities in gener-
alizing across various downstream tasks. These models, which are trained on
⋆ Co-corresponding author: wfsu@uic.edu.cn
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Fig. 1: Comparison with previous method. In contrast to prior work relying
on sequence-level coarse-grained alignment, we propose token-level fine-grained
alignment, enhancing sensitivity to subtle differences. To further improve gener-
alization, we introduce Cross-Granular Semantic Distillation to filter irrelevant
information. Additionally, a prototype-based cross-modal separation mechanism
is established to enable effective dual-modal separation of image and text seman-
tics, advancing multi-modal representation learning.

large-scale image-text pairs, can capture open-vocabulary concepts, offering signif-
icant flexibility. However, adapting these models to domain-specific tasks remains
challenging due to their heavy reliance on carefully crafted input prompts. This
dependence on manual prompt design not only limits efficiency but also fails to
fully leverage the models’ potential, especially in complex domains where more
nuanced and detailed prompts are necessary for optimal performance.

Previous studies, such as HPT [11], have aimed to improve prompt learn-
ing by using hierarchical structures to illustrate relationships between visual
elements (e.g., "Water lily = flowers + leaves + blooms"). However, these
structured relationships do not exist in medical pathology images, where the
complexity arises from subtle, non-hierarchical visual cues. Similarly, CoPrompt
[10] investigated the use of large language models (LLMs) to generate descrip-
tive prompts for aligning image and text representations. Nevertheless, these
approaches depend on sequence-level, coarse-grained alignment (see Figure 1),
which lacks the sensitivity required for fine-grained tasks such as medical pathol-
ogy. In these instances, the inability to capture subtle variations often results in
decreased performance.

In this work, we propose PathoPrompt, a framework designed to address the
challenge of capturing subtle semantic differences that are crucial for accurate
pathology image classification in medical V-L tasks. By implementing a token-
level enhancement mechanism, our method enables more precise modeling of
intra-class variations. Additionally, we introduce a Cross-Granular Semantic
Distillation mechanism, which filters out irrelevant information from both coarse-
and fine-grained prompts. This selective filtering process allows the model to
focus on the most relevant features, enhancing its ability to generalize across
unseen cases. Furthermore, we introduce a prototype-based dual-modal separation
strategy to improve cross-modal alignment, enabling distinct and robust category
representations in both image and text modalities. Our method enhances semantic
separation across classes, which strengthens both modality alignment and class
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Fig. 2: Overview of PathoPrompt structure. (1) Token-level enhancement:
Fine-grained descriptions undergo token-level adjustments, capturing subtle se-
mantic details to increase sensitivity to nuanced inter-class variations. (2) Seman-
tic Distillation: Coarse-grained prompts and fine-grained descriptions are distilled,
aligning information from different levels of granularity. This dual-granularity dis-
tillation balances broad and detailed semantic information, improving robustness
and precision. (3) Prototype-Based Separation: Prototypes are computed from
features extracted by text and image encoders, facilitating inter-class separation
and aligning representations across image and text modalities. This approach
reinforces dual-modal alignment, supporting accurate cross-modal classification.

discrimination. This framework overcomes the limitations of existing methods,
which often lack the sensitivity to capture subtle semantic differences essential
for accurate pathology image classification, providing a more effective solution for
fine-grained medical V-L tasks. The key contributions of our work are summarized
below:(1) We propose PathoPrompt, a novel framework leveraging Cross-Granular
Semantic Alignment to enhance sensitivity and refine the model’s ability to
capture subtle semantic variations in pathology image classification. (2) Token-
level fine-grained alignment captures subtle differences, while Cross-Granular
Semantic Distillation filters irrelevant information, improving generalization and
sensitivity to inter-class variations. A prototype-based cross-modal separation
mechanism further enhances inter-class discrimination by optimizing image-text
semantic separation. (3) Experimental results on five pathology datasets across
three task types demonstrate that our framework outperforms existing methods,
achieving superior effectiveness and sensitivity for fine-grained medical tasks.

2 Method

2.1 Preliminaries

Let ϕ and θ denote the image and text encoders from CLIP, respectively. Given
an input image X ∈ RB×H×W , the input image X is divided into M fixed-size
patches. Each patch is subsequently projected into a patch embedding vp ∈ RM×dv

that represents the image in the latent space. The image encoder ϕ extracts its
embedding as ẽ = ϕ(vp). For a corresponding class label y, we generate a text
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prompt with a hand-crafted template, such as “a photo of a {CLASS}.” This
template is tokenized as a sequence Ỹ = {tSOS , t1, t2, . . . , tL−1, tEOS}, where L
is the token length, and tSOS and tEOS represent the learnable start and end
token embeddings. The text encoder θ then processes Ỹ through transformer
layers to produce a class-specific text embedding g̃ = θ(Ỹ ), with g̃ ∈ Rdt . For
inference, the image embedding ẽ is compared against the class-specific text
embeddings g̃ for all C classes to find the most similar class. The probability of
assigning class label y to image X is defined by:

p(y|X) =
exp(sim(g̃ · ẽ)/τ)∑C

i=1 exp(sim(g̃i · ẽ)/τ)
. (1)

where sim(·) denotes cosine similarity, and τ is a temperature parameter.

2.2 Cross-Granular Semantic Distillation

In this section, we use Cross-Granular Semantic Distillation (GSD) to distill
task-relevant information from two sources: prompts and descriptions. In the
coarse-grained prompt, tp ∈ RC×t, where each prompt follows the format "a
photo of a [CLASS]" for each of the C classes. In fine-grained descriptions,
td ∈ RC×s×t, where each class has s detailed descriptions, such as " Debris is
fragmented material scattered in the tissue.". To enhance robustness, we randomly
select td

s
i=1 from each batch for training. To distill task-relevant information

from both coarse-grained prompts and fine-grained descriptions, we treat tp
and td as inputs with different granularities, where θ(tp) and zd represent their
corresponding embeddings. To enhance the model’s sensitivity, we apply the token-
level enhancement to the fine-grained descriptions td. Specifically, each token
embedding td,i is refined using token-specific parameters, γ̃ = {γ̃s, γ̃b}. These
parameters enable fine-grained semantic adjustments for each token, which are
crucial for achieving accurate cross-modal alignment. The enhanced description
embedding is then computed as zd = ψ θ(γ̃⊤td), where ψ represents the token-
level semantic distillation mechanism. To align the coarse- and fine-grained
representations, we introduce a loss function that ensures the learned embeddings
are both compact and predictive of the target task. This objective is formulated
as:

Ldesc = DKL (P (y|zd) ∥ P (y|θ(tp))) . (2)

This loss function encourages the alignment of coarse-grained and fine-grained
representations, ensuring that the learned embeddings are both compact and
aligned with the target task, through token-level semantic distillation.

In contrast to prior work like CoPrompt, which employs a unidirectional
alignment approach, our method preserves the domain-specific characteristics and
knowledge embedded within the Description. Moreover, CoPrompt’s adjustments
operate at the sentence level, which limits the granularity of alignment. To address
this, we employ a token-level alignment strategy, allowing for finer-grained, token-
specific adjustments.
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Our alignment loss Lalign is defined as the cosine distance between the trans-
formed and normalized Description and Prompt embeddings, formulated as:

Lalign = 1−
ψ
(
θ
(∑L

i=1 γs,itd,i + γb,i

))
· θa (θ(tp))∥∥∥ψ (

θ
(∑L

i=1 γs,itd,i + γb,i

))∥∥∥ ∥θa (θ(tp))∥
. (3)

Here, γ̃s = {γSOS
s ,γ1

s , . . . ,γ
L−1
s ,γEOS

s } and γ̃b = {γSOS
b ,γ1

b , . . . ,γ
L−1
b ,γEOS

b }.
θa is the adaptor layer of text encoder to transform the embedding vector. By
minimizing this alignment loss, we ensure that both embeddings converge in the
shared semantic space, capturing task-relevant details and maintaining domain-
specific nuances. This approach enhances alignment robustness while avoiding
the redundancy associated with sentence-level adjustments, thereby preserving
and leveraging fine-grained semantic information in the description tp.

The final Cross-Granular Semantic Distillation GSD loss function combines
the two terms, ensuring the model to capture domain-specific knowledge while
preserving semantic precision. Therefore, the unified loss function can be expressed
as follows:

LGSD = Ldesc + Lalign. (4)

2.3 Prototype-Based Dual-Modal Separation

To achieve effective class separation across both image and text modalities, we
propose a Prototype-Based Dual-Modal Separation mechanism. This method
maintains embeddings for labeled samples, capturing both image and text features
to compute class prototypes and optimize the semantic separation between classes.

To compute dual-modal prototypes, we calculate the mean feature for each
class in both image and text modalities. For each class c, the class prototype
pc is computed as the mean of image embedding vp and text embedding tp
corresponding to their class. Specifically,

pt,c =
1

Nc

Nc∑
i=1

θa(θ(vp,i)), pi,c =
1

Nc

Nc∑
i=1

ϕa(ϕ(tp,i)). (5)

The text feature ptext,c for each class c is directly derived. Here, Nc denotes
the number of samples belonging to class c, and the summation is performed over
all indices i where yi = c. The Prototype-Based Dual-Modal Separation (PDS)
loss integrates inter-class separation across both modalities, enforcing dual-modal
alignment to improve model generalization.

LPDS =

Nc−1∑
k=1

Nc∑
j=k+1

∥pt,k − pt,j∥2 +
Nc−1∑
k=1

Nc∑
j=k+1

∥pi,k − pi,j∥2. (6)
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Table 1: Few-shot learning and Classes generalization. Comparison between
our method and SOTA methods for base-to-novel generalization on medical image
classification datasets. Our method performs well over the compared methods.
We use red and blue to indicate the first and second-best scores.

Tasks Kather Colorectal

Few-shot Generalization Few-shot Generalization

Acc. F1 Acc. F1 Acc. F1 Acc. F1

CoOp[13] 87.40 83.61 65.67 52.04 74.60 73.86 65.20 60.56
MaPLe[6] 85.42 80.63 77.83 68.47 76.70 75.94 70.30 62.12
PromptSRC[7] 88.08 83.68 79.18 75.30 78.10 77.57 74.80 70.90
CoPrompt[10] 85.24 79.25 76.80 70.45 74.40 72.63 66.80 60.18
PathoPrompt 89.86 85.27 83.26 76.48 78.20 77.71 70.60 66.86

Tasks BloodMNIST KIMIA

Few-shot Generalization Few-shot Generalization

Acc. F1 Acc. F1 Acc. F1 Acc. F1

CoOp[13] 68.75 64.23 54.87 52.07 78.52 74.56 60.74 53.25
MaPLe[6] 78.72 76.02 60.95 56.44 82.22 80.34 60.00 51.41
PromptSRC[7] 78.14 73.29 56.42 52.41 85.93 83.88 61.48 51.09
CoPrompt[10] 80.50 76.79 62.03 57.97 83.70 81.39 59.26 50.41
PathoPrompt 83.31 81.55 68.43 68.12 87.41 85.30 62.96 54.88

2.4 Final Loss

The cross-entropy loss LCE is defined to measure the similarity between the
normalized representations g̃ and ẽ. This loss encourages higher similarity for the
correct class while minimizing similarity with other classes, effectively enhancing
class separation. It is defined as follows:

LCE = − log
exp (sim (g̃ · ẽ) /τ)∑C
j=1 exp (sim (g̃ · ẽ) /τ)

. (7)

The overall objective function combines multiple losses to achieve optimal model
performance. The final loss is expressed as:

L = LGSD + LCE − LPDS. (8)

3 Experiments

3.1 Experimental Setup

Few-shot Learning. To evaluate model performance under data-scarce con-
ditions, we conducted few-shot experiments with a limited number of samples
per class. Classes Generalization. To assess the model’s capacity for gener-
alizing across different classes, we divided the datasets into seen and unseen
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Table 2: Cross-Organ generalization. Accuracy (%) evaluation for prompts
learned from the source dataset. Our plugin consistently enhances existing prompt
learning methods, whether textual, visual, or multi-modal.

BD BL BR CV CO ES HN KD LV LG OV PN PT SK ST TS UT AVG

CoOp [13] 70.00 86.49 78.44 58.33 58.65 75.44 66.67 52.78 80.36 61.90 87.18 86.00 64.58 60.00 78.95 89.36 81.48 72.74
MaPLe [6] 73.33 75.68 71.06 79.17 73.78 90.35 70.24 75.00 71.43 97.62 61.54 52.00 81.25 62.00 84.21 63.83 83.33 74.46
CoPrompt [10] 73.33 78.38 73.05 77.78 41.89 74.56 67.86 67.86 80.36 90.48 61.54 44.00 87.50 80.00 84.21 74.47 72.22 72.32
PromptSRC [7] 76.67 83.78 66.27 69.44 52.16 82.46 76.19 83.33 76.79 90.48 66.67 54.00 89.58 62.00 81.58 65.96 81.48 74.05
PathoPrompt 75.56 89.19 68.06 59.72 75.14 92.98 59.52 69.44 71.43 76.19 71.79 82.00 89.58 46.00 89.47 85.11 81.48 75.45

Fig. 3: Accuracy comparison for DEB (debris) and TUM (tumor) classes
in the class generalization experiment on the Karther dataset. DEB is a seen
class (trained with a few samples), while TUM is an unseen class (zero-shot).

categories. The model was trained in a few-shot setting using limited samples from
the seen classes and evaluated on both seen (few-shot) and unseen (zero-shot)
classes. Cross-organ Generalization. The model was trained with samples
from adrenal gland tissues to classify benign and malignant cases and evaluated
in zero-shot on unseen organs.
Datasets. The classes generalization and few-shot learning tasks utilized the
Kather dataset [5], Colorectal Histology Dataset [4], BloodMNIST [12], and
KIMIA Path960 [8], each contributing diverse histopathological images essen-
tial for assessing multi-class classification and texture-based learning. For the
cross-organ generalization task, the PanNuke dataset [1] was used due to its
comprehensive tissue type coverage and detailed annotations, enabling robust
evaluation of cross-domain generalization.
Training Details. For a fair comparison, we adopt the CLIP-ViT-B/16 archi-
tecture as the base model across different methods. The model is initialized with
pre-trained weights from Pathology Language and Image Pre-Training (PLIP)
[2] to leverage domain-specific knowledge. We use the prompt template "a photo
of a {class}" and train the model in fp16 precision. Training is conducted using
the SGD optimizer with a learning rate of 0.0035 on a single GeForce RTX 4090.

3.2 Comparison to the State-of-the-Art (SOTA) Approaches

PathoPrompt consistently outperforms baseline models across multiple tasks,
demonstrating superior performance in few-shot learning, class generalization, and
cross-organ generalization. In the few-shot learning task, PathoPrompt achieves
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Fig. 4: t-SNE visualizations of image embeddings on the Kather and
BloodMNIST datasets under few-shot and generalization settings.

Table 3: Impact of Different
Prompt Templates.

Prompt Template Accuracy
A photo of a {CLASS} 83.26
A tissue of {CLASS} 82.24

A microscopic view of {CLASS} 84.68
A tissue sample slide of {CLASS} 85.60

Table 4: Ablation study results
of components.

Methods Few. Gen. Cross.
Baseline 77.61 57.56 71.68
w/o GSD 82.20 60.77 66.35
w/o PDS 81.70 57.29 73.97

Ours 83.31 68.43 75.45

84.69% accuracy and 82.46% F1 score, surpassing PromptSRC by 2.13% in accu-
racy. For class generalization, it outperforms PromptSRC by 3.34% in accuracy,
achieving 71.31% accuracy and 66.59% F1 score. In cross-organ generalization,
PathoPrompt leads with 75.45% accuracy, surpassing the closest competitor,
MaPLe, by 0.99%. Across all tasks, PathoPrompt excels in maintaining robust
performance even with limited data, unseen classes, and cross-organ scenarios,
proving its strong generalization ability for real-world medical applications, as
seen in the accuracy comparison in Fig. 3 and t-SNE visualization in Fig. 4,
which highlight PathoPrompt’s superiority.

3.3 Ablation Study

Effect of Prompt Template Choice. Table 3 demonstrates that while a
generic prompt on the Kather dataset, "a photo of a [CLASS]", achieves com-
petitive performance, domain-specific prompts like "a tissue sample slide
of [CLASS]" improve accuracy and F1 score, highlighting the advantage of
fine-grained medical terminology in enhancing model performance for pathology
classification.
Effect of Component. Table 4 shows few-shot generalization results on the
BloodMNIST dataset and cross-organ generalization on PanNuke. Table 4 shows
that PathoPrompt’s full model outperforms ablated versions, with GSD and
PDS both contributing significantly to few-shot accuracy, class generalization,
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and cross-organ generalization, demonstrating their crucial roles in enhancing
generalization and inter-class separability.

4 Conclusion

We introduce PathoPrompt, a robust framework that enhances fine-grained
pathology image classification by leveraging token-level alignment, Cross-Granular
Semantic Distillation, and prototype-based cross-modal separation.
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