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Abstract. Brain functional network (FN) extraction is fundamental to advancing 
our understanding of brain function, providing critical insights into the neural 
mechanisms underlying cognition and behavior. Data-driven FN analysis meth-
ods have been developed to analyze functional magnetic resonance imaging 
(fMRI) data. However, to ensure cross-subject correspondence, group-level anal-
yses of these methods sacrifice subject-specific variation. This trade-off between 
group-level alignment and subject-specific discrepancies hinders the accurate 
characterization of individual brain FNs. In this study, we propose a multi-subject 
orthogonal sparse matrix decomposition method without the need for group-level 
analysis, which simultaneously extracts both group-level FNs and individual FNs 
with cross-subject correspondence. We introduce a novel quasi-orthogonality 
constraint that enhances the linear independence of FNs, ensuring effective ex-
traction of FNs, while enabling precise control over FN spatial scale. Addition-
ally, by further incorporating a sparsity constraint, our method effectively mini-
mizes spatial overlap between FNs, resulting in sparse representations. For sim-
ulated datasets, our method outperforms comparison methods, supporting its low 
parameter sensitivity and superior ability to extract FNs and time courses. Appli-
cation to multi-site fMRI datasets, comprising 233 healthy controls (HCs) and 
205 schizophrenia patients (SZs), validates the reproducibility of FNs extracted 
by our method. The results underscore the method's ability to preserve both cross-
subject correspondence and individual variability. Overall, our method advances 
fMRI analytic capabilities by reconciling population-level consistency with indi-
vidualized neural signatures, offering enhanced discriminative power for inves-
tigating neuropsychiatric disorder mechanisms and brain function. 

Keywords: Functional Magnetic Resonance Imaging, Schizophrenia, Multi-
subject Matrix Decomposition. 
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1 Introduction 

The human brain, as a highly complex neurobiological system, governs fundamental 
cognitive processes including sensory perception, higher-order cognition, memory con-
solidation, and behavioral regulation [1]. Resting-state functional magnetic resonance 
imaging (fMRI) provides a whole-brain mapping of intrinsic neural activity. Building 
upon this methodological foundation, the data-driven functional network (FN) analysis 
method can identify spatially coherent neural ensembles and delineate their temporally 
synchronized activation patterns, thereby elucidating brain function [2]. 

The significance of individual differences in brain FNs highlights the necessity for 
methodologies that can both accommodate these variations and ensure cross-subject 
consistency [3, 4]. Three primary paradigms are commonly employed to analyze indi-
vidual differences while ensuring inter-subject correspondence. The first paradigm em-
ploys single-subject FN analysis followed by post-hoc cross-subject alignment through 
clustering or matching procedures [5-7]. However, this approach may overemphasize 
subject-specific characteristics, leading to a lack of comparability of individual FNs. 
The second paradigm utilizes group-level FNs or existing templates as references for 
individual optimization, such as PCA-based methods [8], spatiotemporal (dual) regres-
sion [9], and group information-guided ICA (GIG-ICA) [10]. However, these methods 
may lead to individual FNs that are overly aligned with references [4]. The third para-
digm directly enforces cross-subject correspondence during individual FN analysis. In-
dependent vector analysis (IVA) [11-13] attempts to balance individual specificity and 
group consistency through cross-subject dependency modeling. Li et. al. incorporated 
an inter-subject group sparsity regularization term in non-negative matrix factorization 
(NMF) for enforcing individual FNs to common spatial structures [4]. Despite these 
advancements, the complex initialization processes in these methods may still interfere 
with the accurate representation of individual-specific information. 

To capture individual variability while ensuring cross-subject correspondence, we 
propose a multi-subject orthogonal sparse matrix decomposition method for individual 
FN extraction. The primary contributions of this paper include: (1) Without requiring 
group-level analysis or complex initialization procedures, our proposed method enables 
concurrent identification of robust group-level FNs and individual FNs with cross-sub-
ject comparability. (2) We propose a novel quasi-orthogonality constraint that ensures 
the effective extraction of FNs by enhancing their linear independence while allowing 
for precise modulation of the FN scales. (3) By further incorporating a sparsity con-
straint, the proposed method effectively reduces the spatial overlap between FNs, yield-
ing sparse representations. (4) The results on simulated datasets demonstrate the low 
parameter sensitivity and effectiveness of our proposed method in estimating individual 
FNs and time courses (TCs). Results on multi-site fMRI data validate the reproducibil-
ity of the FNs extracted by our method and indicate the cross-subject correspondence 
and individual variability of individual FNs. 
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2 Methods 

2.1 Multi-Subject Orthogonal Sparse Matrix Decomposition Method 
for FMRI Data 

Given an fMRI dataset [𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑖𝑖 , … ,𝑋𝑋𝑚𝑚] consisting of 𝑚𝑚 subjects, where 𝑋𝑋𝑖𝑖 ∈
ℝ𝑠𝑠×𝑡𝑡 represents the 𝑖𝑖th subject’s data matrix (with 𝑠𝑠 voxels and 𝑡𝑡 time points), the pro-
posed multi-subject orthogonal sparse matrix decomposition method aims to simulta-
neously extract 𝑘𝑘 group-level FNs 𝑈𝑈𝑐𝑐 ∈ ℝ𝑠𝑠×𝑘𝑘, along with 𝑘𝑘 subject-specific FNs 𝑈𝑈𝑖𝑖 ∈
ℝ𝑠𝑠×𝑘𝑘 and corresponding TCs 𝑉𝑉𝑖𝑖 ∈ ℝ𝑡𝑡×𝑘𝑘 for each subject 𝑖𝑖. 

Given a single subject 𝑖𝑖, the sparse dictionary learning (SDL) as shown in (1) has 
been successfully applied to blind source separation problems, enabling effective FN 
extraction [14, 15]. 

�𝑋𝑋𝑖𝑖 − 𝑈𝑈𝑖𝑖(𝑉𝑉𝑖𝑖)𝑇𝑇�
𝐹𝐹
2 + α�𝑈𝑈𝑖𝑖�

1
(1) 

Here, 𝛼𝛼 is used to regulate the sparsity of FNs. We extend the SDL method by incor-
porating the multi-view concept, which enables simultaneous multi-subject analysis 
while effectively preserving subject-specific information as formulated in (2). 

���𝑋𝑋𝑖𝑖 − 𝑈𝑈𝑖𝑖(𝑉𝑉𝑖𝑖)𝑇𝑇�
𝐹𝐹
2 + α�𝑈𝑈𝑖𝑖�

1�
𝑚𝑚

𝑖𝑖=1

(2) 

To establish the cross-subject correspondence of individual FNs, correspondence 
constraints 𝛽𝛽�𝑈𝑈𝑖𝑖 − 𝑈𝑈𝑐𝑐�𝐹𝐹

2
 is used to align the individual FNs with the group-level FNs, 

as formulated in (3). By adjusting the parameter 𝛽𝛽, the degree of similarity between the 
individual FNs and the group-level FNs can be flexibly controlled. Moreover, (3) also 
contributes to improving the quality of the group-level FNs. 

���𝑋𝑋𝑖𝑖 − 𝑈𝑈𝑖𝑖(𝑉𝑉𝑖𝑖)𝑇𝑇�
𝐹𝐹
2 + 𝛼𝛼�𝑈𝑈𝑖𝑖�

1
+ 𝛽𝛽�𝑈𝑈𝑖𝑖 − 𝑈𝑈𝑐𝑐�𝐹𝐹

2
�

𝑚𝑚

𝑖𝑖=1

(3) 

To enhance the effectiveness of FN extraction, we impose an orthogonality con-
straint (𝑈𝑈𝑖𝑖)𝑇𝑇𝑈𝑈𝑖𝑖 = 𝐼𝐼 as shown in (4). By enforcing orthogonality, the spatial separability 
among the extracted FNs can be significantly enhanced. The orthogonality constraint 
not only can reduce the spatial redundancy but also improve the reliability and inter-
pretability of the FNs. In cases where orthogonality and sparsity constraints are incom-
patible, we strategically transfer the sparsity constraint to group-level FNs 𝑈𝑈𝑐𝑐, follow-
ing the principles of self-supervised learning, to maintain the integrity and applicability 
of the method. 

���𝑋𝑋𝑖𝑖 − 𝑈𝑈𝑖𝑖(𝑉𝑉𝑖𝑖)𝑇𝑇�
𝐹𝐹
2 + 𝛽𝛽�𝑈𝑈𝑖𝑖 − 𝑈𝑈𝑐𝑐�𝐹𝐹

2
� + 𝛼𝛼‖𝑈𝑈𝑐𝑐‖1

𝑚𝑚

𝑖𝑖=1

, 𝑠𝑠. 𝑡𝑡. (𝑈𝑈𝑖𝑖)𝑇𝑇𝑈𝑈𝑖𝑖 = 𝐼𝐼 (4) 

To address the issue of excessively small FN scales induced by the orthogonality 
constraint, we propose a quasi-orthogonality constraint (𝑈𝑈𝑖𝑖)𝑇𝑇𝑈𝑈𝑖𝑖 = 𝑎𝑎𝑎𝑎 that not only pre-
serves the orthogonality constraint’s effect on spatial separation but also allows for 
flexible modulation of FN scales. Here, the scaling coefficient 𝑎𝑎 enables systematic 
regulation of FN magnitudes. 

Finally, the multi-subject sparse matrix decomposition method is formed as shown 
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in (5), enabling the simultaneous identification of robust group-level FNs and less-spa-
tially overlapping, sparse, individual FNs with cross-subject correspondence. 

���𝑋𝑋𝑖𝑖 − 𝑈𝑈𝑖𝑖(𝑉𝑉𝑖𝑖)𝑇𝑇�
𝐹𝐹
2 + 𝛽𝛽�𝑈𝑈𝑖𝑖 − 𝑈𝑈𝑐𝑐�𝐹𝐹

2
� + 𝛼𝛼‖𝑈𝑈𝑐𝑐‖1

𝑚𝑚

𝑖𝑖=1

 𝑠𝑠. 𝑡𝑡. (𝑈𝑈𝑖𝑖)𝑇𝑇𝑈𝑈𝑖𝑖 = 𝑎𝑎𝑎𝑎 (5) 

2.2 Optimization 

As shown in Table 1, the optimization process of our method includes initialization 
with k-means [16] and iterative optimization of the individual FNs 𝑈𝑈𝑖𝑖 , their corre-
sponding TCs 𝑉𝑉𝑖𝑖, and the group-level FNs 𝑈𝑈𝑐𝑐. 

Given a subject 𝑖𝑖 with fixing 𝑈𝑈𝑐𝑐, the optimization of 𝑉𝑉𝑖𝑖 and 𝑈𝑈𝑖𝑖 are completed. Equa-
tion (5) can be rewritten as Equation (6), and Equation (7) is used to update 𝑉𝑉𝑖𝑖 by direct 
calculation. 

𝑚𝑚𝑚𝑚𝑚𝑚�𝑋𝑋𝑖𝑖 − 𝑈𝑈𝑖𝑖(𝑉𝑉𝑖𝑖)𝑇𝑇�
𝐹𝐹
2 + 𝛽𝛽�𝑈𝑈𝑖𝑖 − 𝑈𝑈𝑐𝑐�𝐹𝐹

2  𝑠𝑠. 𝑡𝑡. (𝑈𝑈𝑖𝑖)𝑇𝑇𝑈𝑈𝑖𝑖 = 𝑎𝑎𝑎𝑎 (6) 

𝑉𝑉𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝((𝑈𝑈𝑖𝑖)𝑇𝑇) (7) 
The updated rule of 𝑈𝑈𝑖𝑖  is 𝑈𝑈𝑖𝑖 = √𝑎𝑎𝑈𝑈�𝑉𝑉�𝑇𝑇 , where 𝑈𝑈�𝐷𝐷𝑉𝑉�𝑇𝑇 = 𝑠𝑠𝑠𝑠𝑠𝑠(√𝑎𝑎𝑋𝑋𝑖𝑖𝑉𝑉𝑖𝑖 + 𝛽𝛽√𝑎𝑎𝑈𝑈𝑐𝑐) , 
𝑠𝑠𝑠𝑠𝑠𝑠(⋅) represents the singular value decomposition operator. Prove as follows: (6) is 
rewritten as 

𝑚𝑚𝑚𝑚𝑚𝑚
(𝑈𝑈𝑖𝑖)𝑇𝑇𝑈𝑈𝑖𝑖=𝑎𝑎𝑎𝑎

𝑇𝑇𝑇𝑇((𝑋𝑋𝑖𝑖)𝑇𝑇𝑋𝑋𝑖𝑖 − 2(𝑋𝑋𝑖𝑖)𝑇𝑇𝑈𝑈𝑖𝑖(𝑉𝑉𝑖𝑖)𝑇𝑇 + 𝑉𝑉𝑖𝑖(𝑈𝑈𝑖𝑖)𝑇𝑇𝑈𝑈𝑖𝑖(𝑉𝑉𝑖𝑖)𝑇𝑇 + 𝛽𝛽(𝑈𝑈𝑖𝑖)𝑇𝑇𝑈𝑈𝑖𝑖

− 2𝛽𝛽(𝑈𝑈𝑖𝑖)𝑇𝑇𝑈𝑈𝑐𝑐 + 𝛽𝛽𝛽𝛽𝑐𝑐𝑇𝑇𝑈𝑈𝑐𝑐) 
= 𝑚𝑚𝑚𝑚𝑚𝑚

(𝑈𝑈𝑖𝑖)𝑇𝑇𝑈𝑈𝑖𝑖=𝑎𝑎𝑎𝑎
𝑇𝑇𝑇𝑇((𝑋𝑋𝑖𝑖)𝑇𝑇𝑈𝑈𝑖𝑖(𝑉𝑉𝑖𝑖)𝑇𝑇 + 𝛽𝛽(𝑈𝑈𝑖𝑖)𝑇𝑇𝑈𝑈𝑐𝑐)   let 𝐻𝐻 = 1

√𝑎𝑎
𝑈𝑈𝑖𝑖 

= 𝑚𝑚𝑚𝑚𝑚𝑚
𝐻𝐻𝑇𝑇𝐻𝐻=𝐼𝐼

𝑇𝑇𝑇𝑇�√𝑎𝑎(𝑋𝑋𝑖𝑖)𝑇𝑇𝐻𝐻(𝑉𝑉𝑖𝑖)𝑇𝑇 + 𝛽𝛽√𝑎𝑎𝐻𝐻𝑇𝑇𝑈𝑈𝑐𝑐�. (8) 
Combined with 𝑈𝑈�𝐷𝐷𝑉𝑉�𝑇𝑇 = 𝑠𝑠𝑠𝑠𝑠𝑠(√𝑎𝑎𝑋𝑋𝑖𝑖𝑉𝑉𝑖𝑖 + 𝛽𝛽√𝑎𝑎𝑈𝑈𝑐𝑐), 

𝑇𝑇𝑇𝑇�√𝑎𝑎(𝑋𝑋𝑖𝑖)𝑇𝑇𝐻𝐻(𝑉𝑉𝑖𝑖)𝑇𝑇 + 𝛽𝛽√𝑎𝑎𝐻𝐻𝑇𝑇𝑈𝑈𝑐𝑐� = 𝑇𝑇𝑇𝑇�√𝑎𝑎𝑋𝑋𝑖𝑖𝑉𝑉𝑖𝑖𝐻𝐻𝑇𝑇 + 𝛽𝛽√𝑎𝑎𝑈𝑈𝑐𝑐𝐻𝐻𝑇𝑇� 
= 𝑇𝑇𝑇𝑇�𝑈𝑈�𝐷𝐷𝑉𝑉�𝑇𝑇𝐻𝐻𝑇𝑇�   let 𝑄𝑄 = 𝐻𝐻𝑉𝑉�   

= 𝑇𝑇𝑇𝑇�𝑈𝑈�𝐷𝐷𝑄𝑄𝑇𝑇�, (9) 
where 𝑇𝑇𝑇𝑇(⋅) represents the trace operation. Since 𝑉𝑉�𝑉𝑉�𝑇𝑇 = 𝐼𝐼  and 𝐻𝐻𝑇𝑇𝐻𝐻 = 𝐼𝐼 , 𝑄𝑄𝑇𝑇𝑄𝑄 = 𝐼𝐼 . 
Denoting 𝑈𝑈� = [𝑢𝑢�1, … ,𝑢𝑢�𝑘𝑘] ∈ ℝ𝑚𝑚×𝑘𝑘 , 𝐷𝐷 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑑𝑑1, … ,𝑑𝑑𝑘𝑘) ∈ ℝ+

𝑘𝑘×𝑘𝑘 , 𝑄𝑄 = [𝑞𝑞1, … , 𝑞𝑞𝑘𝑘] ∈
ℝ𝑛𝑛×𝑘𝑘. According to the Cauchy-Schwarz inequality, 

𝑇𝑇𝑇𝑇�𝑈𝑈�𝐷𝐷𝑄𝑄𝑇𝑇� ≤�𝑑𝑑𝑖𝑖‖𝑢𝑢�𝑖𝑖‖2‖𝑞𝑞𝑖𝑖‖2

𝑘𝑘

𝑖𝑖=1

= �𝑑𝑑𝑖𝑖

𝑘𝑘

𝑖𝑖

= 𝑇𝑇𝑇𝑇(𝐷𝐷), (10) 

when 𝑄𝑄 = 𝑈𝑈� , 𝑇𝑇𝑇𝑇�𝑄𝑄𝑇𝑇𝑈𝑈�𝐷𝐷� reaches its upper bound, 𝑄𝑄 = 𝑈𝑈� = 𝐻𝐻𝑉𝑉� . Finally, based on 
𝑉𝑉�𝑉𝑉�𝑇𝑇 = 𝐼𝐼, the optimization rule for 𝐻𝐻 is expressed by (11). Combined with 𝐻𝐻 = 1

√𝑎𝑎
𝑈𝑈𝑖𝑖 

The optimization rule for 𝐻𝐻 is expressed by (12). 

𝐻𝐻 = 𝐻𝐻𝑉𝑉�𝑉𝑉�𝑇𝑇 = 𝑈𝑈�𝑉𝑉�𝑇𝑇 =
1
√𝑎𝑎

𝑈𝑈𝑖𝑖 (11) 

𝑈𝑈𝑖𝑖 = √𝑎𝑎𝐻𝐻 = √𝑎𝑎𝑈𝑈�𝑉𝑉�𝑇𝑇 (12) 
Given 𝑈𝑈𝑖𝑖 and 𝑉𝑉𝑖𝑖, 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚∑ �𝛽𝛽�𝑈𝑈𝑖𝑖 − 𝑈𝑈𝑐𝑐�𝐹𝐹

2
� + ‖𝑈𝑈𝑐𝑐‖1𝑚𝑚

𝑖𝑖=1  is used to update 𝑈𝑈𝑐𝑐. The 
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soft threshold method [17] is used as shown in Equation (13). 

[𝑈𝑈𝑐𝑐]𝑗𝑗𝑗𝑗 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(�∑ 𝑈𝑈𝑖𝑖𝑚𝑚
𝑖𝑖=1
𝑚𝑚

�
𝑗𝑗𝑗𝑗

) ⋅ 𝑚𝑚𝑚𝑚𝑚𝑚(∣ �∑ 𝑈𝑈𝑖𝑖𝑚𝑚
𝑖𝑖=1
𝑚𝑚

�
𝑗𝑗𝑗𝑗
∣ − 𝛼𝛼

2
, 0), (13)

where [𝐴𝐴]𝑗𝑗𝑗𝑗𝑖𝑖  represents the (𝑗𝑗, 𝑘𝑘)th element of 𝐴𝐴, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(⋅) stands for the symbolic oper-
ator, ∣⋅∣ represents the absolute value operation. 

Table 1. Multi-subject orthogonal sparse matrix decomposition method. 

Algorithm 1 
Input: all fMRI data 𝑋𝑋 = [𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑖𝑖 , … ,𝑋𝑋𝑚𝑚], the number of FNs 𝑘𝑘, the number 
of subjects 𝑚𝑚, the parameters 𝛼𝛼 and 𝛽𝛽. 
Output: the group-level FNs 𝑈𝑈𝑐𝑐, the individual FNs 𝑈𝑈𝑖𝑖, and corresponding TCs 𝑉𝑉𝑖𝑖. 

Initialization 

For 𝒊𝒊 = 𝟏𝟏:𝒎𝒎 
Initialize 𝑉𝑉𝑖𝑖 by k-means; 
𝑈𝑈𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝((𝑉𝑉𝑖𝑖)𝑇𝑇); 

End 
𝑈𝑈𝑐𝑐 = ∑ 𝑈𝑈𝑖𝑖𝑚𝑚

𝑖𝑖=1
𝑚𝑚

; 

Updating process 

Repeat 
For 𝑖𝑖 = 1:𝑚𝑚 

𝑉𝑉𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝((𝑈𝑈𝑖𝑖)𝑇𝑇); 
𝑈𝑈�𝐷𝐷𝑉𝑉�𝑇𝑇 = 𝑠𝑠𝑠𝑠𝑠𝑠(√𝑎𝑎𝑋𝑋𝑖𝑖𝑉𝑉𝑖𝑖 + √𝑎𝑎𝛽𝛽𝑈𝑈𝑐𝑐); 
𝑈𝑈𝑖𝑖 = √𝑎𝑎𝑈𝑈�𝑉𝑉�𝑇𝑇; 

End 
[𝑈𝑈𝑐𝑐]𝑗𝑗𝑗𝑗 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(�∑ 𝑈𝑈𝑖𝑖𝑚𝑚

𝑖𝑖=1
𝑚𝑚

�
𝑗𝑗𝑗𝑗

) ⋅ 𝑚𝑚𝑚𝑚𝑚𝑚(∣ �∑ 𝑈𝑈𝑖𝑖𝑚𝑚
𝑖𝑖=1
𝑚𝑚

�
𝑗𝑗𝑗𝑗
∣ − 𝛼𝛼

2
, 0); 

Until convergence 

3 Materials and Experiments 

3.1 Experiments on Simulated Datasets 

Using the SimTB toolbox [18], we generated two simulated fMRI datasets with identi-
cal parameters: a training set (sim_train) for assessing parameter sensitivity and param-
eter tuning, as well as an evaluation set (sim_eval) for method validation. Each dataset 
contained 20 subjects' data with 150 time points per subject, formatted as 148×148 
voxel matrices. These simulations were constructed through linear combinations of 20 
ground truth FNs, incorporating inter-subject variability via spatial transformations 
(translations, rotations, and spreads). The data augmentation included Rician noise with 
contrast-to-noise ratio randomized across subjects within the 0.65-1.0 range. 

To assess the parameter sensitivity and select optimal parameters, the parametric 
relationship between 𝛼𝛼/𝛽𝛽 values and FN accuracy on the sim_train dataset is evaluated. 
We systematically evaluated two hyperparameters (𝛼𝛼  and 𝛽𝛽) across discrete values 
within predefined ranges ( 𝛼𝛼 ∈ [0.001, 0.01, 0.1, 0.2, 0.4, 0.6, 0.8] , and 𝛽𝛽 ∈
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[0.01, 0.1, 0.5, 1, 2, 5, 10]) using the sim_train dataset. The optimal parameter combi-
nation was identified based on the highest mean FN accuracy across all subjects, quan-
tified by aligning the extracted FNs with ground truth FNs using the Hungarian algo-
rithm [19] based on Pearson correlation coefficients. 

To conduct a comparative performance evaluation of the extracted FN and TC accu-
racy, we implemented four methodologies that directly enforce cross-subject corre-
spondence during individual FN analysis. These methods, including our method, our 
degraded method, the IVA method [20, 21], and the NMF method [4], were conducted 
on the sim_eval dataset. Here, our degraded method represents our method (5) without 
the sparsity constraint on group-level FNs. 

3.2 Experiments on Real FMRI Datasets 

The resting-state fMRI data from the Function Biomedical Informatics Research Net-
work (FBIRN)1 [22] and the Centers of Biomedical Research Excellence (COBRE)2 
[23] were used to evaluate the reliability of our proposed method and explore the path-
ogenesis of SZs. All demographic information is presented in Table 2. The details of 
data preprocessing and the acquisition of a common mask on fMRI data are described 
in detail in [24]. Finally, we obtained fMRI data from three datasets, including the 
COBRE dataset with all 157 subjects from COBRE, the FBIRN_HC dataset with all 
144 HCs from FBIRN, and the FBIRN_SZ dataset with all 137 SZs from FBIRN. 

Table 2. Demographic information. 

  Age 
mean±std 

Gender 
male/female 

Transition 
mean±std 

Rotation 
mean±std 

COBRE 
HCs 38.09±11.66 64/25 0.22±0.15 0.19±0.12 
SZs 37.74±14.47 57/11 0.20±0.12 0.18±0.12 

p-value 0.8652 0.0785 0.3624 0.5258 

FBIRN 
HCs 37.15±11.00 104/40 0.19±0.15 0.21±0.16 
SZs 39.02±11.35 103/34 0.18±0.13 0.20±0.16 

p-value 0.1605 0.5733 0.4239 0.4223 
Note: The two-sample t-test was used for investigating age and head movement differences between HCs 
and SZs, and the chi-square test was used for sex differences between HCs and SZs. 
 
We applied the proposed method to three datasets (COBRE, FBIRN_HC, and 
FBIRN_SZ) to extract group-level FNs, individual FNs, and corresponding TCs, with 
the FN count fixed at 25, 𝛼𝛼 = 0.1, and 𝛽𝛽 = 1. 

To assess the reproducibility of the extracted FNs and examine the group-level dif-
ferences between the HCs and SZs, we utilized the group-level FNs derived from the 
COBRE dataset as a reference to align all group-level FNs across all three sites as fol-
lows: (1) between COBRE and FBIRN_HC, (2) between COBRE and FBIRN_SZ. The 
matching processes were carried out using the Hungarian algorithm [19] with Pearson 
correlation coefficients. Only the FNs that exhibited stable matching with a single site 

 
1 https://doi.org/10.1016/j.neuroimage.2015.09.003 
2 http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html 
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in both FBIRN_SZ and FBIRN_HC datasets were identified to reflect the differences 
of functional networks between HCs and SZs. 

To further characterize cross-subject correspondence and individual variability, we 
randomly selected 10 subjects from the COBRE dataset and rearranged their individual 
FNs according to the order of group-level FNs. Then, the correlations between rear-
ranged individual FNs are computed and presented. 

4 Results 

4.1 Results on Simulated Datasets 

The relationship between 𝛼𝛼/𝛽𝛽 values and mean FN (TC) accuracy across all subjects 
in the sim_train dataset is illustrated in Fig. 1(A). Based on this analysis, α=0.1 and 
β=1 are selected as the optimal parameters. The results show that our proposed method 
maintains high accuracy in extracting both FNs and TCs across a wide range of param-
eter settings, indicating a robust performance with low sensitivity. 

Fig. 1(B) shows the accuracy of the extracted FNs and TCs across four methods for 
all subjects in the sim_eval dataset. Our method demonstrates superior performance in 
FN extraction compared to the IVA and NMF methods while maintaining comparable 
accuracy to the IVA method in TC extraction. The FN (TC) extraction accuracy of our 
method achieves 0.9660 (0.9642), which is higher than the degraded method's accuracy 
of 0.9652 for FNs and 0.9641 for TCs. These results collectively highlight the robust-
ness and effectiveness of our method in FN extraction. 

 
Fig. 1. Accuracy of individual FNs and TCs on simulated datasets. (A) The relationship between 
𝛼𝛼/𝛽𝛽 values and mean FN (TC) accuracy across all subjects in the sim_train dataset. (B) Boxplots 
illustrating the accuracy of extracted FNs and TCs for all the simulated subjects in the sim_eval 
dataset. Four methods are compared: NMF, IVA, our degraded method, and our method. 

4.2 Results of Real FMRI Datasets 

Fig. 2(A) illustrates the correlation of group-level FNs between COBRE and 
FBIRN_HC (FBIRN_SZ). Of the 25 FNs extracted, 18 (20) group-level FNs exhibit 
correlations exceeding 0.5 between COBRE and FBIRN_HC (FBIRN_SZ). Three rep-
resentative FNs, which are stably identified across all three datasets, along with their 
correlations, are displayed in Fig. 2(B). These findings collectively demonstrate the 
reproducibility of the group-level FNs extracted using our method. 
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From Fig. 2(A), we observe that FN 2 is reproducibly identified only in the COBRE 
and FBIRN_HC datasets, while FN 25 shows consistent identification exclusively in 
COBRE and FBIRN_SZ datasets, which suggests potential variability in the manifes-
tation of FN 2 and FN 25 across schizophrenia populations. These two FNs, which are 
associated with the cerebellum and superior temporal gyrus, are highlighted in Fig. 
2(C). 

As shown in Fig. 2(D), all 25 group-level brain FNs from the COBRE dataset are 
summarized into a template, which highlights the spatial tightness and smoothness of 
the extracted FNs. Fig. 2(E) presents the correlations between rearranged individual 
FNs derived from 10 randomly selected subjects from the COBRE dataset. The ob-
served strict block-diagonal structure, with distinct correlations within each block, un-
derscores the method's ability to effectively identify subject-specific individual FNs 
while maintaining consistent cross-subject correspondence. 

 
Fig. 2. Visualization of FNs and their correlation in real fMRI datasets. (A) Correlation of group-
level FNs between COBRE and FBIRN_HC (FBIRN_SZ). (B) Display of three group-level FNs 
and their correlation value between COBRE and FBIRN_HC (FBIRN_SZ). (C) Two group-level 
FNs showing functional differences between HCs and SZs. (D) FN template derived from 
COBRE. (E) Correlations between the rearranged individual FNs of 10 random subjects. 

5 Conclusion 

This study proposes a novel multi-subject orthogonal sparse matrix decomposition 
method for functional network analysis, designed to concurrently extract group-level 
functional networks and individual functional networks with cross-subject correspond-
ence, without requiring group-level analysis or complex initialization. Another key in-
novation lies in the introduction of a quasi-orthogonality regularization, which not only 
improves the linear independence of functional networks but also allows precise mod-
ulation of their scales. Furthermore, the incorporation of a sparsity constraint effec-
tively minimizes spatial overlap between networks, resulting in sparse representations 
that enhance interpretability. 

For simulated datasets, our method outperforms comparison methods, supporting its 
low parameter sensitivity and superior ability to extract functional networks and time 
courses. For multi-site fMRI datasets, the results validate the reproducibility of 
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networks extracted by our method and underscore the method's ability to preserve both 
cross-subject correspondence and individual variability. Additionally, the results from 
our method reveal differences in group-level functional networks between the healthy 
controls and schizophrenia patients, associated with the cerebellum and superior tem-
poral gyrus. These findings align with previous studies that have highlighted functional 
abnormalities in schizophrenia populations [25, 26], thereby supporting the validity of 
our method. In summary, the proposed method represents a significant advancement in 
functional neuroimaging analysis research. 
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