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Abstract. Intracardiac echocardiography (ICE) has the potential to
play a crucial role in structural heart disease (SHD) interventions by
providing high-quality imaging in real time, without many of the key
drawbacks of established imaging modalities. However, ICE’s limited
field-of-view (FoV) requires continuous readjustments of the catheter
position to fully visualize the dynamic cardiac environment, which im-
pairs spatial navigation and increases procedure time and complexity.
Dynamic panoramic reconstruction can mitigate this limitation. How-
ever, state-of-the-art methods depend on precise catheter tracking, the
accuracy of which is affected by the presence of noise and anatomical
motion. While registration can correct these errors, existing approaches
are computationally prohibitive for large imaging volumes due to re-
peated iterations over image data, further amplified by the added time
dimension. To address these challenges, we present a novel method for
truly dynamic panoramic reconstruction by leveraging the repetitive na-
ture of cardiac motion under a cyclic environment assumption. To our
knowledge, our method is the first to employ dynamic pose graph opti-
mization (PGO) specifically designed for 4D ICE tracking. Our results
demonstrate enhanced tracking accuracy and improved panoramic recon-
struction quality, potentially providing real-time, dynamic anatomical
guidance for clinicians. The improved alignment of overlapping ICE vol-
umes and increased temporal tracking resolution represent a substantial
advancement in 4D ICE imaging, enhancing navigation and decision-
making during complex cardiac interventions.

Keywords: dynamic panoramic reconstruction · intracardiac echocar-
diography · pose graph optimization.
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1 Introduction

Intracardiac echocardiography (ICE) is an ultrasound (US) modality that as-
sists or replaces transesophageal echocardiography (TEE) in structural heart
disease procedures [1, 6, 14, 16], reducing the risks associated with general anes-
thesia and providing an alternative for patients at high risk of complications due
to esophageal or gastric disease, where the use of TEE remains limited [13, 3].
However, ICE’s limited field of view (FoV) makes navigation within the heart
difficult, often requiring fluoroscopy for guidance, which introduces radiation ex-
posure. Reconstruction of a larger FoV from multiple overlapping ICE volumes
and its visualization assists physicians in navigating the ICE catheter and tools
during procedures. Still, an accurate reconstruction is difficult to achieve due to
the highly dynamic environment and noise affecting the accuracy of electromag-
netic tracking of the imaging catheter’s position.

Dynamic panoramic reconstruction in ICE addresses the problem of gen-
erating a wide FoV image that captures cardiac anatomy at multiple phases
from different views and time points. Existing methods for static panoramic re-
construction [11, 17, 18], neglect the dynamic aspects of the environment, and
assume a change in image content arises only from a change in the pose of the
imaging device. In the case of cardiac imaging, the heartbeat deforms anatomi-
cal structures, violating this assumption and rendering these methods unsuitable
for dynamic cases or multiple cardiac phases. In the line of static methods, an
ICE-specific static panoramic reconstruction was proposed in [5], fusing elec-
trocardiogram (ECG) gated US volumes based on electromagnetic (EM) track-
ing supported by sequential registration. Sequential registration can suffer from
drift, and EM tracking is noise-prone [2], so acquiring an anatomically aligned
panoramic reconstruction is not always possible. Simultaneous localization and
mapping (SLAM) methods have been explored for ICE imaging, such as the
GridSLAM approach by Koolwal et al. [8] for reconstructing an ECG-gated left
atrium. However, extending this to a 4D (3D + t) map would require maintain-
ing multiple explicit 4D map hypotheses, making the approach computationally
too expensive. While ECG gating enables static panoramic reconstruction, it re-
stricts an image-based catheter pose update rate to 1–2 Hz, making navigation
cumbersome. Mao [10] introduced a dynamic direct simultaneous registration
(D-DSR) method for 3D TEE, enabling dynamic reconstruction across multiple
phases. However, its scalability is limited, with runtimes increasing significantly
as the number of volumes grows4. Given ICE’s narrower FoV, lower signal-to-
noise ratio at image borders due to unfocused transmission, and the need for
volumes of multiple phases, reconstructions may involve up to 100 volumes,
making D-DSR impractical for clinical applications.

Other possible optimization methods, such as pose graph optimization (PGO),
do not have an explicit representation of the reconstructed volume, and their
measurements (pairwise registration) scale linearly in runtime with the number

4 For six volumes, an iteration takes 78 seconds, requiring 10–50 iterations to converge.
For eight volumes, iteration time increases to 124 seconds with the same voxel count.
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of US volumes. PGO is used in SLAM and reconstruction to refine estimated
poses by minimizing the error between measurements, ensuring global consis-
tency in a set of transformations. PGO in intravascular US imaging has been
proposed for registering pullbacks taken at different times [19], however, without
considerations of a dynamic environment.

To address the issues of a static environment assumption and the prohibitive
computational requirements of [5, 8, 10], we propose a method to improve the dy-
namic panoramic reconstruction of 4D ICE imaging by utilizing PGO. We extend
a static environment assumption to a cyclic environment assumption, allowing
us to model the repetitive deformation of the cardiac cycle. The cyclic envi-
ronment assumption allows the environment to change predictably over a finite
time, returning to its initial state. From this assumption, the cardiac anatomy
appears static when observed at the same point of the cardiac cycle over time.
This allows us to build a hypergraph, a graph of pose graphs per discrete time
step in the cardiac cycle. A single pose graph per cardiac cycle optimizes the ICE
catheter pose by combining a registration scheme with EM tracking (which pro-
vides direct 3D pose measurements), ensuring an accurate and globally aligned
reconstruction. At the same time, the hypergraph ensures a spatially consistent
dynamic panoramic reconstruction across cardiac phases. To support a larger
number of US volumes while ensuring computational efficiency suitable for clin-
ical applications, we restrict image information usage to pairwise registration,
thereby reducing the parameter search space in computationally expensive opti-
mization. In contrast, global pose refinement, which involves a larger parameter
space, is efficiently handled by PGO in SE(3), the special Euclidean group rep-
resenting 3D rotations and translations. To summarize our contributions:

– Development of the first method for dynamic panoramic reconstruction tai-
lored specifically to ICE imaging, enabling higher temporal resolution in
catheter navigation.

– Introduction of PGO approach for dynamic panoramic reconstruction, en-
abling efficient optimization of poses of large number of US volumes suitable
for 4D ICE imaging.

– Demonstration of a major improvement in dynamic panoramic reconstruc-
tion in ICE imaging enabled by the improved tracking of the 4D ICE catheter.

2 Method

2.1 Fundamentals

The PGO graph consists of nodes, which are connected through edges. x =
(x1, ...,xT )

⊤ is a vector, where xi is the pose of node i. zij and Ωij represent
a measurement as an edge and are the mean and the information matrix of a
geometric transform between node i and node j, respectively, where the infor-
mation matrix holds the uncertainties. ẑij(xi, xj) is the expected measurement.
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Let F(x) be the negative log-likelihood of all measurements

F(x) =
∑

⟨i,j⟩∈C

eij (xi,xj)
T
Ωijeij (xi,xj) (1)

where eij (xi,xj) = zij − ẑij (xi,xj) is the difference between the expected and
real measurement, and C is the set of all pairs. We seek the configuration of
nodes x∗ that minimizes the negative log-likelihood F(x) [4].

2.2 Dynamic Reconstruction

To account for dynamic environments, a 4D pose graph is proposed that opti-
mizes the trajectory of the tip of the ICE catheter over multiple cardiac phases
simultaneously. Based on the cyclic environment assumption, the heart rhythm
is discretized in the cn phases. As the heart is assumed static within each cardiac
phase cn, a pose graph is constructed per phase, referred to as an intra-phase
graph (see Sect. 2.3). Cardiac phase assignment is commonly performed using
ECG gating [8, 11], which ensures robustness to heart rate variability and allows
exclusion of anomalous images in the presence of irregular rhythms, as often en-
countered in structural heart procedures. Each newly acquired US volume can be
assigned to one of the intra-phase graphs. To regularize drift between intra-phase
graphs, inter-phase edges (see Sec. 2.4) are introduced. This allows us to jointly
optimize all poses for all cardiac phases through a single hyper pose graph. Fig. 1
visualizes the concept of building a hyper pose graph out of multiple pose graphs
per cardiac phase and connecting them via inter-phase edges.

Given a sequence of US acquisitions, we have a series of states where the state
vector of a US volume can be expressed as xt = [pt,qt,Θt, cn]

T where pt ∈ R3

is the 3D position, qt ∈ R4 is the 3D orientation as a quaternion and Θt is the
acquired US volume at time t, where cn is a scalar value that represents a phase
in the cardiac cycle. The dynamic panoramic reconstruction m4D is a collection
of 4D fused volumes, and is denoted by

m4D = {vi,j,k(c) | vi,j,k(c) ∈ N, c ∈ {c0, c1, ..., cn}} , (2)

where vi,j,k(c) represents the brightness value of the voxel at grid coordinates
(i, j, k) that belongs to a discretized cardiac phase cn. vi,j,k(c) is defined as

vi,j,k(c) = f(Tpt,qt(Θt(c))) (3)

where Tpt,qt
is a homogeneous transform that maps voxel intensities Θt(c) of

discrete cardiac phase cn into the reconstruction and f is a function that fuses
voxels into the reconstruction grid. To replay the reconstruction m4D, vi,j,k(c)
is displayed iterating over c according to the patients heart rate.

2.3 Intra-Phase Graph

The intra-phase graph defines the nodes and edges of a single cardiac phase,
where the environment is assumed to be static. xi represents the position pt and
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Fig. 1. Concept of a hyper pose graph which connects intra-phase graphs per cardiac
phase through inter-phase edges. An intra-phase graph is shown at an enlarged scale.
Image adapted from [12], used under CC BY 4.0.

orientation qt of a US volume Θi. Given two poses xi and xj with overlapping
observed data Θi and Θj , their relative transformation zij is estimated via rigid
pairwise registration using a mask for non-image areas, random pixel sampling,
and Conjugate Gradient Line Search. As no significant differences were found
across similarity metrics, mean square similarity was chosen for its efficiency.
The information matrix Ωij is chosen as the inverse of the covariance matrix
of the positions and orientations, in combination with the inverse of the final
mean squares similarity metric used for registration. In addition, the information
matrix scales translation and orientation errors to the same order of magnitude.

The first node is fixed to prevent drift during optimization. Registration mea-
surements are incorporated as sequential transformations i−1

i T, with additional
non-adjacent transformations i−1

i+1T for regularization. Loop closures, identified
via EM tracking, reduce drift by linking nodes with overlapping features. Addi-
tional sparse EM-tracking measurements are included. Figure 1 illustrates the
graph connections. Registrations identify clear features in overlapping US vol-
umes while EM-tracking prevents drifting by providing global context.

2.4 Inter-Phase Edges

Inter-phase edges connect intra-phase graphs of neighboring phases through mea-
surements of catheter motion, expressed as rigid transformations. Since image
changes arise from catheter motion and cardiac deformation, these effects must
be decoupled. Assuming minimal deformation, an affine transformation jointly
optimizes catheter motion and deformation by registering US images from neigh-
boring cardiac phases. A rigid transformation is then extracted to isolate catheter
motion. The affine transformation consists of a linear transformation A ∈ R3×3
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and a translation vector t ∈ R3. The matrix A contains rotation, scaling, and
shearing. By applying polar decomposition, A a can be represented as

A = RS (4)

where R is orthogonal matrix representing the pure rotation, and S contains the
scaling and shearing. Lastly, det(R) = +1 is verified to exclude reflections. This
decomposition affects only the linear component A of the affine transformation,
while the translation t remains unchanged.

Combining all measurements in a PGO maximizes the likelihood of observa-
tion by minimizing the error function of (1). This yields the optimal configura-
tion of nodes x∗, which hold the parameters for Tpt,qt

to generate the dynamic
panoramic reconstruction.

3 Experiments

The ICE data is acquired with a novel ICE system developed by LUMA Vision 5

that provides 3D US volumes in real-time. Fig. 1 shows the geometry of a US
volume as a 2D plane in colored outlines, where the fan shape revolves around
the center axis, resulting in a 360◦ FoV. The EM sensor is embedded near the
US transducer with a known offset.

Our method is tested on a dynamic silicon phantom modeling the supe-
rior vena cava (SVC), inferior vena cava (IVC), and cardiac chambers. Static
and dynamic acquisitions were performed on a static and pump-driven beating
phantom, respectively, with the latter introducing substantial EM-field noise,
representative of clinical conditions. The static and dynamic panoramic recon-
struction used 60 and 230 US volumes, respectively. While our approach allows
any number of cardiac phases, the dynamic sequence was discretized into five
cardiac phases to capture the full motion range while limiting manual annota-
tion. Although additional phases improve registration accuracy, they increase
computational complexity. The ICE catheter follows a trajectory from the SVC
to the IVC and back, challenging the method to handle revisited areas.

While a CT scan of the phantom is available, classifying its walls in US
and CT data is error-prone due to their smooth, cornerless structure, making
landmark annotation unreliable. With no alternative ground truth, we use a
quantifiable setup with 3D-printed cones as landmarks, similar to [15], fixed be-
neath the phantom. Cone tips are annotated in US volumes, and annotations are
transformed into the global frame for comparison with ground truth landmarks.

Reconstruction accuracy is evaluated using feature error and global error.
Feature error quantifies the spread of multiple instances of a feature, indicating
duplication or blurring, defined as the mean pairwise distance between predicted
landmark labels. Global error measures alignment to ground truth as the mean
Euclidean distance between true and predicted locations.

5 LUMA Vision Ltd., Dublin, Ireland, www.lumavision.com
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4 Results and Discussion

Quantative Results The results from the quantifiable setup, presented in
Sect. 3, are shown in Fig. 2, where the distribution of annotations around their
ground truth landmark is visualized for the baseline and our method, respec-
tively. Table 1 presents results for different configurations in static and dynamic
environments. Experiments 3–5 and 7–10 evaluate individual components of our
proposed method, with Experiment 9 corresponding to the complete approach.
Sequential registration significantly reduces feature error compared to raw and
smoothed EM-tracking but introduces drift, increasing global error. Incorporat-
ing EM-tracking into the pose graph provides global information, reducing both
errors compared to the baseline of EM-tracking, but slightly increasing feature
error. Sparse EM-tracking preserves local accuracy while mitigating global drift.

In the dynamic case, intra-phase pose graphs without inter-graph edges re-
duce feature error compared to smoothed 6 EM-tracking but suffers from drift.
Sparse EM-tracking mitigates drift, similar to the static case. Adding inter-graph
edges regularizes drift between phase-neighboring graphs, further reducing fea-
ture error. A mean global error increase of 0.2mm is negligible for navigation,
while the focus remains on minimizing feature error to optimize image clarity.
Despite pronounced EM-tracking noise, indicated by a 43% increase in feature
error and a 22.4% increase in global error when comparing static and dynamic
conditions, our method significantly enhances tracking accuracy. An ablation
study tested the cyclic environment assumption, where sequential registration
across cardiac phases with sparse EM-tracking results in an increased feature
and global error, highlighting the role of intra- and inter-phase edges.

Qualitative Results ImFusion Suite [7] was used for visualization, blending
voxel intensities using distance-to-border fusion. Panoramic reconstructions were
6 Excessive noise makes raw EM-tracking unviable for the dynamic case.

(a) (b)

Fig. 2. Experimental setup with cones as landmarks, smoothed EM-tracking trajec-
tory (blue), and the reconstructed trajectory (green). Red points indicate projected
annotations in the global frame based on the respective US volume pose. Annotation
estimates from (a) EM-tracking and (b) our method are shown.
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Fig. 3. Maps of the cardiac chambers of a silicon heart phantom using EM tracking
(a) and our method (b) as a 2D plane from fused 3D reconstruction. Zoomed-in com-
parisons are shown in (c), with (d) providing a qualitative comparison to a CT scan.

generated based on EM tracking and the proposed method, differing only in vol-
ume poses, resulting in a dense 3D US volume with an extended FoV. Fig. 3
compares a 2D plane of volumetric reconstructions from a silicon heart phan-
tom. The reconstruction based on EM-Tracking (a) shows discontinuities in the
right atrium, SVC, and IVC and blurring of the right pulmonary veins. The
reconstruction based on our proposed method (b) shows clear borders and vis-
ible right pulmonary veins. The shape of the right atrium changed, which was
validated by aligning a CT scan of the silicon phantom with our reconstruction
(d), showing good agreement of the IVC, SVC, and right atrium 7.

Runtime Using PGO with pairwise registration enables efficient handling of
US volumes by decoupling global pose refinement from image content. Pairwise
registrations, which are independent and parallelizable, take ∼3 seconds each
7 The atrial appendage is missing in (a) and (b) due to the phantom’s high reflectivity.

Table 1. Comparison of methods for reconstructing a static and dynamic silicon heart
phantom, evaluated by feature and global error, with EM-tracking as a baseline.

Method Feature Error Global Error
[mm] [mm]

Static Environment
1) Raw EM Tracking 5.11 ± 3.82 5.79 ± 2.88
2) Smoothed EM Tracking 4.69 ± 3.92 5.48 ± 2.74
3) Sequential Registration 2.08 ± 1.42 8.58 ± 4.68
4) Intra-Phase Graph Dense EM Tracking 3.08 ± 2.86 4.65 ± 1.86
5) Intra-Phase Graph Sparse EM Tracking 1.81 ± 1.21 3.27 ± 1.04
Dynamic Environment
6) Smoothed EM Tracking 6.74 ± 4.56 6.71 ± 3.66
7) Unconnected Intra-Phase Graphs 2.66 ± 1.55 7.96 ± 3.87
8) Unconnected Intra-Phase Graphs Sparse EM Tracking 2.57 ± 1.55 4.07 ± 1.86
9) ICE-PoGO 2.47 ± 1.48 4.28 ± 1.75

10) Affine Sequential Registration with EM Tracking 2.95 ± 2.00 4.33 ± 1.89
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(Intel Core i7-10875H in Python) with geometric center initialization. The PGO
step completes in under 1 second and can achieve real-time performance [9].

5 Conclusion

We demonstrated a method of dynamic panoramic reconstruction that addresses
the challenges specific to 4D ICE through improved tracking of the imaging
catheter. Introducing a hypergraph in PGO allows for joint optimization of poses
across cardiac phases and increases temporal resolution in navigation and car-
diac anatomy reconstruction. Efficient image use enables dynamic panoramic
ICE reconstruction, addressing the demand for a large number of volumes. The
approach was tested in a dynamic silicon phantom, showing both significant
quantitative and qualitative improvements over the baseline of static panoramic
reconstruction of gated volumes based on EM tracking. These improvements pro-
vide better anatomical context and guidance, increasing usability for clinicians
and, we hope, will result in improved patient outcomes in the future.
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