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Abstract. Multi-granularity features can be extracted from multiple
modal medical images and how to effectively analyze these features is a
challenging and critical issue for computer-aided diagnosis (CAD). How-
ever, most existing multi-modal classification methods have not fully
explored the interactions among the intra- and inter-granularity features
across multi-modal. To address this limitation, we propose a novel In-
depth Integration of Multi-Granularity Features Network (IIMGF-Net)
for a typical multi-modal task, i.e., a dual-modal based CAD. Specifi-
cally, the proposed IIMGF-Net consists of two types of key modules, i.e.,
Cross-Modal Intra-Granularity Fusion (CMIGF) and Multi-Granularity
Collaboration (MGC). The CMIGF module enhances the attentive in-
teractions between the same granularity features from dual-modals and
derive an integrated representation at each granularity. Based on these
representations, the MGC module captures inter-granularity interactions
among the resulting representations of CMIGF through the coarse-to-fine
and fine-to-coarse collaborative learning mechanism.Extensive experi-
ments on two dual-modal datasets validate the effectiveness of the pro-
posed method, demonstrating its superiority in dual-modal CAD tasks
by integrating multi-granularity information.

Keywords: Multi-granularity · Dual-modal medical images · Computer-
aided Diagnosis · Feature Fusion · Classification.

1 Introduction

In recent years, with the rapid advancement of medical technology, there has been
a growing interest in leveraging multi-modal medical images for computer-aided
diagnosis (CAD) [17,21,22,25]. As a typical case in practical scenarios, dual-
modal images are usually collected for analysis. With the latest deep learning
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techniques, multi-granularity features can be extracted from each image modal
to reflect the coarse- and fine-grained properties of the images. A crucial aspect
of dual-modal based CAD is to effective analyze these multi-granularity features,
and this involves the fusion and collaboration of multi-granularity features from
all the modals.

The necessity and importance of analyzing multi-granularity features can be
demonstrated by the following two specific medical applications, i.e., skin cancer
diagnosis and lymph node metastasis prediction. In the field of skin cancer diag-
nosis, coarse-grained information captures global lesion characteristics [22], while
fine-grained details provide critical insight into pigment distribution, boundary
sharpness, and texture characteristics [11], and all of which are essential for ac-
curate diagnosis. Similarly, in the field of lymph node metastasis prediction [2],
multi-granularity features enable the extraction of richer structural and func-
tional information [2,23], thereby enhancing predictive accuracy.

Despite the significance and potential advantages, the existing multi-modal
image classification methods, which can be primarily categorized into early-
[6,15], middle- [9,14,22,25], and late-fusion [19,20] methods, still suffer notable
shortcomings. The early-fusion methods [6,15] usually preprocess the raw multi-
modal data or concatenate them directly, preventing the indepth interactions
between the image modal. Middle-fusion methods alleviate this issue by per-
forming fusion at the feature level.

Nevertheless, the interactions among the intra- and inter-granularity features
across multi-modal have not been fully explored. For example, [14] and [22]
employ cross-attention to fuse multi-modal features at a single granularity, but
they do not explore the feature interactions among multiple granularities.

In contrast, [9] and [25] utilize fusion modules to enable feature interactions
at different levels, but they still fail to capture the feature interactions across
multiple granularities. Similarly, late-fusion methods such as [19] and [20] usu-
ally apply simple averaging or concatenating operations at the final classification
stage, disregarding the intrinsic dependencies between multi-granularity features
and constraining the model’s ability to leverage multi-modal information effec-
tively. Modeling the inter-granularity interactions is crucial for capturing hier-
archical dependencies between coarse- and fine-grained features. The limitations
of the existing methods hinder the optimal integration of complementary and
discriminative information, leading to suboptimal performance in multi-modal
image classification.

To address these limitations, we propose an Indepth Integration of Multi-
Granulairty Features Network (IIMGF-Net), which comprises two core mod-
ules, i.e., the Cross-Modal Intra-Granularity Fusion (CMIGF) and the Multi-
Granularity Collaboration (MGC). Specifically, the CMIGF module is designed
to tackle the issue of intra-granularity feature integration. At each granularity
level, it adaptively fuse the dual-modal features with attentive Mamba [5] to
derive an unified representation. Meanwhile, inspired by [26], the MGC mod-
ule focuses on enhancing inter-granularity feature interactions by employing a
coarse-to-fine and fine-to-coarse mechanism. It enables bidirectional collabora-
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tion between multi-granularity features, establishing hierarchical dependencies
across different granularity features. By integrating intra- and inter-granularity
features more comprehensively, the proposed model ensures richer feature ex-
traction from dual-modal images, ultimately enhancing the classification perfor-
mance.

The key contributions of this paper can be summarized as follows.
1. We propose a novel IIMGF-Net, which can achieve indepth integration of

multi-granularity features from dual-modal medical images to improve the
accuracy of disease diagnosis.

2. We explore a Cross-Modal Intra-Granularity Fusion module and the Multi-
Granularity Collaboration module, which enable intra-granularity feature
fusion and inter-granularity feature collaboration, respectively.

3. We conduct comprehensive experiments to validate the effectiveness of the
proposed IIMGF-Net. Compared to the state-of-the-art methods, the pro-
posed method achieves the highest classification performance.

2 Methodology

2.1 Overall Architecture

We propose the Indepth Integration of Multi-Granularity Features Network
(IIMGF-Net), which consists of two primary stages, as illustrated in Fig. 1(a).
The first stage comprises L stacked encoders, each employing a dual-stream
VSS module followed by a down-sampling module as proposed in [13], as the
backbone architecture to extract multi-granularity features from the dual-modal
inputs. Specifically, the raw dual-modal images, denoted as xraw and yraw,
are preprocessed by convolutional layer and ReLu activation function to ob-
tain x0,y0 ∈ RH0×W0×C0 , which are then fed into the first encoder. Within the
stacked encoders, multi-granularity features are iteratively extracted as follows:

xl = VSS(xl−1), yl = VSS(yl−1), l ∈ [1, · · · , L] (1)

where xl,yl ∈ R
H0
2l

×W0
2l

×2lC0 .
To enhance the intra-granularity features interactions, a Cross-Modal Intra-

Granularity Fusion (CMIGF) module in each encoder adaptively fuses xl and
yl and generates f l

x and f l
y. f

l
x and f l

y are concatenated to form Zl as a joint
representation at this granularity, and it will be fed into the Multi-Granularity
Collaboration (MGC) module at the second stage for inter-granularity interac-
tion analysis. At the same time, f l

x and f l
y will be added to xl+1 and yl+1 as

the input of the CMIGF in the next encoder.
The outputs xL and yL from the last encoder are added to fL

x and fL
y

respectively, extracted by the CMIGF module in the last encoder. The result-
ing features and the output of the MGC module are then processed through
the global average pooling (GAP) layer. The pooled features are subsequently
concatenated and fed into a fully connected layer for classification.

The details of the two key modules of CMIGF and MGC are introduced
below.
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Fig. 1. Illustration of our proposed network. (a) The overall architecture. In the first
stage, input data are processed through stacked encoders, and their outputs are con-
catenated and fed into the Multi-Granularity Collaboration (MGC) in the second stage.
The extracted features from both stages undergo Global Average Pooling (GAP), are
concatenated, and then passed through a fully connected layer for final prediction. (b)
The Cross-Modal Intra-Granularity Fusion (CMIGF) module. (c) The Cross-Modal
Mamba (CMM) module. (d) The Multi-Granularity Collaboration (MGC) module.

2.2 Cross-Modal Intra-Granularity Fusion

In order to adaptively fuse the features at the same granularity and extract the
complementary information from them, a Cross-modal Intra-granularity Fusion
(CMIGF) module (illustrated in Fig. 1(b)) is utilized. With input xl,yl, the
CMIGF module can be formulated as follows:

x̌l, y̌l =
(
SiLu(DWConv(Linear(xl + f l−1

x ))),

SiLu(DWConv(Linear(yl + f l−1
y )))

)
,

f̌
l

x, f̌
l

y = CMM(x̌l, y̌l),

f l
x,f

l
y =

(
xl + f l−1

x + Linear(f̌
l

x), yl + f l−1
y + Linear(f̌

l

y)
)
.

(2)

The inputs are sequentially processed through a linear mapping, depth-wise con-
volution (DWConv) and SiLu activation function, generating intermediate rep-
resentations x̌l, y̌l ∈ RNl×2lC0 where Nl =

H0

2l
× W0

2l
. These representations are

then fed into the Cross-Modal Mamba (CMM) module (described in detail in
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the next section) to generate the interactive outputs f̌
l

x, f̌
l

y ∈ RNl×2lC0 . Sub-
sequently, a linear mapping restores the original feature dimension 2lC0, while
the spatial dimension is recovered by reshaping Nl back into H0

2l
× W0

2l
. Finally,

a residual connection ensures that the outputs f l
x,f

l
y retain the original input

information. f l
x and f l

y are concatenated to form Zl as a joint representation of
them at this granularity, and they will be fed back into the CMIGF in the next
encoder, with f0

x,f
0
y = 0.

2.3 Cross-Modal Mamba

The Cross-Modal Mamba (CMM) module, illustrated in Fig. 1(c), is designed to
enable adaptive cross-modal interactions and facilitate information communica-
tion between the two modalities under the Mamba framework [5]. With inputs
x̌l, y̌l ∈ RNl×2lC0 , f̌

l

x can be obtained as follows:

ht = e∆1A1ht−1 +∆1B1x̌lt ,

f̌
lt
x = S1ht +D1x̌lt ,

f̌
l

x = Concat(f̌
lt
x )(t ∈ [1, · · · , N ]),

(3)

where x̌lt ∈ R1×2lC0 represents represents the input at the token level, while f̌
l

x ∈
RNl×2lC0 denotes the final output. The term ∆1 ∈ R is a timescale parameter
used to discretize A1 and B1. The learnable parameters A1 ∈ Rd×d and D1 ∈
R are randomly initialized, whereas B1 ∈ Rd×1 and ∆1 ∈ R are specifically
associated with x̌l. S1 ∈ R1×d is obtained by S1 = Linear(y̌l), where d denotes
the hidden dimension. Through this sequential scanning process, the hidden state
ht ∈ Rd×2lC0 progressively accumulates contextual information, capturing long-
range dependencies between tokens. f̌

l

y can be obtained similarly by switching
x and y in the equations above. In this case, the CMM module produces the
outputs f̌

l

x and f̌
l

y.

2.4 Multi-Granularity Collaboration

Inspired by [26], the Multi-Granularity Collaboration (MGC) module illustrated
in Fig. 1(d) is incorporated into the proposed model to explore inter-granularity
feature interaction. As introduced above, multi-granularity features Z = {Zl}Ll=1

(L = 3 in this study) can be generated by the CMIGF module, i.e., Zl =

Concat(f l
x,f

l
y) ∈ R

H0
2l

×W0
2l

×4lC0 . Different granularity features may present spe-
cific image properties. For example, the fine-grained features (with smaller l) may
mainly present detailed lesion boundary prediction, while coarse-grained features
(with larger l) capture broader contextual information. These multi-granularity
features are probably closely correlated to each other and should be jointly an-
alyzed for disease diagnosis. To enable comprehensive cross-granularity inter-
actions between these features, a bidirectional coarse-to-fine and fine-to-coarse
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collaborative learning mechanism is developed in MGC module, as introduced
below.

Coarse-to-Fine Collaboration (C2F). With Zl as the fine-grained fea-
ture and Zl+1 as the coarse-grained feature, the key idea of this C2F module is
to align the coarse-grained feature Zl+1 with Zl first by enlarging it and then
perform attentive cross-granularity interactions between them, finally deriving
a joint representation Kl. Specifically, to align Zl+1 with Zl, we first apply a
linear transformation followed by a convolutional layer for dimension expansion.
The coarse-to-fine collaboration is then achieved via the CMM module.

Ẑl+1 = Conv((Linear(Zl+1))),

Kl = CMM(Zl, Ẑl+1)
(4)

Fine-to-Coarse Collaboration (F2C). Converse to C2F, F2C aims to
shrink the fine-grained feature and then perform attentive cross-granularity in-
teractions between the shrunk feature and the coarse-grained feature. Specifi-
cally, with the resulting feature K1 from the C2F module as the fine-grained
feature and K2 as the coarse-grained feature, K1 is downsampled via max-
pooling, followed by a convolutional layer to align its dimensions with K2. Then
the fine-to-coarse cross-granularity interactions are performed with the CMM
module. The process can be formulated as:

K̂1 = Conv (MaxPooling (K1))

R2 = CMM
(
K2, K̂1

) (5)

In the following, R2 is considered as the fine-grained feature and K3 as the
coarse-grained feature for the same process as described above to obtain the final
refined feature R3. By doing this, the feature R3 are enhanced by incorporating
both coarse- and fine-grained lesion clues for diagnosis.

3 Experiments and Results

3.1 Datasets

In this study, two tumor datasets, including one public dataset and one private
dataset, are used in the evaluation.

1. The publicly available Derm7pt dataset [12] comprises 413 training samples,
203 validation samples, and 395 test samples. Each sample has a dermoscopy
and a clinical image. It includes eight labels: a diagnostic label and seven 7-
point checklist labels, i.e., pigment network (PN), blue-whitish veil (BWV),
vascular structures (VS), pigmentation (PIG), streaks (STR), dots and glob-
ules (DaG), and regression structures (RS). The task is to predict the eight
labels for each sample. The data splits provided by the original study’s [12]
are used.
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Fig. 2. Integrated Gradients visualization on the Derm7pt datasets.

2. DECT-LNM Dataset: The private dataset consists of a total of 160 samples,
each containing six dual-energy CT (DECT) images: three images obtained
at 100 keV and the rest at 150 keV. These images containing adenocarcinoma
were cropped from the raw DECT images. Subsequently, each cropped image
is normalized and resized to 224 × 224 pixels. Among these samples, 75 are
positive (lymph node metastases) and 85 are negative (no metastases). Five-
fold cross-validation is performed.

3.2 Implement details

We employ Vmamba [13] as the pretrained backbone, and the raw inputs are
xraw,yraw ∈ R224×224×3, while the final outputs are xL,yL ∈ R7×7×768, with
the encoder depth set to L = 3. Data augmentation includes random flips,
shifts, rotations, and brightness-contrast adjustments. The model is trained using
AdamW optimizer with a learning rate of 1e-4, weight decay of 1e-4, and batch
size of 32. All the experiments are performed on a single NVIDIA RTX A6000
with 48 GB memory. The code is publicly available at https://github.com/
seuzjj/IIMGF-Net

3.3 Results

Twelve state-of-the-art methods are involved in the experimental study, including
Rest [24], Xcit [1], Levit [4], Mambavision [7], Efficientnet [18], RegNet [16],
ResNet [8], and Xception [3] as early fusion models; HiFuse [10], CRD-Net [14],
and TFormer [25] as middle fusion models; and the late fusion model of FM4Net
[19]. As shown in Table 1, ’E’ denotes early fusion, ’M’ denotes middle fusion,
and ’L’ denotes late fusion.

On Derm7pt Dataset Table 1 presents the accuracy (ACC), Area Under the
Curve (AUC), sensitivity (SEN), and specificity (SPE) averaged over the eight
classification tasks. As can be seen, the proposed IIMGF-Net achieves the highest
ACC of 77.0% among all the competing methods, outperforming the state-of-the-
art multi-modal methods CRO-Net, FM4Net and TFormer by 5.4%, 3.2%, and
2.1%, respectively. The proposed method consistently achieves the best results

https://github.com/seuzjj/IIMGF-Net
https://github.com/seuzjj/IIMGF-Net
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Table 1. The classification performance (%) of different methods on Dern7pt and
DECT-LNM data sets.

Method Derm7pt DECT-LNM Category
ACC AUC SEN SPE ACC AUC SEN SPE

HiFuse[10] 66.0 72.3 49.7 72.7 82.0±3.8 83.9±3.1 79.2±8.8 83.5±8.4 M
Rest[24] 67.6 74.6 54.0 71.8 80.7±1.5 85.9±4.8 90.6±6.9 72.2±6.1 E
Xcit[1] 67.9 72.4 51.5 73.2 82.0±1.8 85.0±2.7 93.0±9.5 72.2±6.0 E
Levit[4] 68.8 75.2 55.3 73.9 84.0±3.7 85.4±4.9 86.4±7.5 80.1±9.2 E
Mambavision[7] 68.9 74.9 56.2 77.4 82.7±4.4 86.5±5.3 85.6±6.6 78.9±12.8 E
Efficientnet[18] 69.1 76.9 55.5 76.4 84.7±4.5 86.6±3.1 92.3±7.7 78.5±10.2 E
RegNet[16] 69.2 76.6 54.0 76.0 84.0±1.5 86.7±4.7 82.4±11.5 84.6±9.5 E
ResNet[8] 69.6 76.8 55.6 76.4 84.0±4.4 85.7±4.6 88.4±4.2 79.8±7.9 E
Xception[3] 70.6 78.4 55.1 76.2 85.3±6.5 86.5±7.5 94.7±7.9 76.7±10.7 E
CRD-Net[14] 71.6 80.4 58.7 78.7 87.3±4.4 89.7±6.7 96.5±5.3 80.2±8.6 M
FM4Net [19] 73.8 83.0 61.8 80.4 86.7±4.1 90.2±4.4 93.2±4.4 81.0±8.8 L
TFormer[25] 74.9 84.8 63.5 81.3 86.0±2.8 89.1±4.6 88.7±7.4 83.6±5.3 M
IIMGF-Net(proposed) 77.0 85.8 65.3 82.7 91.3±5.1 94.7±4.9 95.2±7.9 87.1±4.5 M
*E: Early fusion, M: Middle fusion, L: Late fusion.

Table 2. The abation experiment (%) of different methods on Derm7pt and DECT-
LNM data sets.

Module Derm7pt DECT-LNM
ACC AUC SEN SPE ACC AUC SEN SPE

without MGC 76.1 85.8 63.4 81.2 88.7±3.0 91.7±3.2 92.6±4.5 85.0±6.7
without CMIGF 75.7 84.5 63.2 81.1 87.3±2.8 92.0±3.8 86.7±11.1 86.9±7.4
IIMGF-Net(proposed) 77.0 85.8 65.3 82.7 91.3±5.1 94.7±4.9 95.2±7.9 87.1±4.5

in AUC, SEN, and SPE. Moreover, as shown by the attention score in Fig. 2,
the model reasonably focus on the lesion areas to reach the diagnosis conclusion.
These results highlight the superior performance of the proposed IIMGF-Net
compared to the state-of-the-art methods.

On DECT-LNM Dataset Table 1 presents the evaluation results with mul-
tiple metrics on DECT-LNM dataset. As can be seen, the proposed IIMGF-Net
achieves the highest ACC of 91.3% among all the competing methods, outper-
forming the state-of-the-art multi-modal methods TFormer, FM4Net and CRO-
Net by 5.3%, 4.6% and 4.0%, respectively. The proposed method consistently
achieves the best results in AUC, SEN, and SPE, further confirming its effec-
tiveness.

Ablation Studies Ablation studies are conducted to verify the efficacy of the
CMIGF and MGC modules in the proposed method, and the results are pre-
sented in Table 2. As can be seen, on the Derm7pt dataset, removing MGC
or CMIGF reduces accuracy by 0.9% and 1.3%, respectively. On the DECT-
LNM dataset, the accuracy of the proposed method will be decreased by 2.6%
and 4.0% if without the MGC or CMIGF module, respectively. This highlights
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the importance of exploring both intra-granularity and inter-granularity features
interactions in multi-modal-based diagnosis tasks.

4 Conclusion

In sum, this paper proposes an IIMGF-Net to explore the interactions among
the intra- and inter-granularity features across dual-modals. Comprehensive ex-
periments on the Derm7pt and DECT-LNM datasets consistently validate the
effectiveness of the proposed method, achieving state-of-the-art classification per-
formance.
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