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Abstract. Computer-aided diagnosis (CAD) systems for skin lesion anal-
ysis reduce costs and workload associated with the manual inspection of
skin diseases. Nevertheless, the performance of deep learning (DL)-based
CAD systems is constrained by the limited availability of labeled data,
necessitating advanced dataset augmentation techniques. To address this
limitation, we propose DiDGen, a novel method that employs Diffusion
models (DMs) for Dermoscopic image Generation and lesion-mask pair
synthesis. Specifically, we introduce DermPrompt, a new type of struc-
tured text prompt rich with clinical details annotated by large language
models (LLMs), which facilitates DMs’ learning of fine-grained visual
representations. Additionally, we propose a new paradigm for lesion-
mask pair synthesis by incorporating a region-aware attention loss during
finetuning to facilitate the build of semantic connections between text
and visual representations, and then integrating test-time layout guid-
ance with attention-based annotation to synthesize diverse and accu-
rate lesion-mask pairs in a training-free manner. Extensive experiments
demonstrate that our method improves the quality and diagnostic utility
of generated dermoscopic images, thereby enhancing DL model perfor-
mance in skin lesion classification and segmentation tasks. Our code is
available at https://github.com/junjie-shentu/DiDGen.
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1 Introduction

Skin cancer is a public health challenge, with the most lethal melanoma causing
8290 deaths in the US in 2024 [24]. While dermoscopy is a reliable imaging
modality for skin cancer diagnosis, manual visual assessment is time-intensive
and prone to subjective bias, causing a diagnostic accuracy of about 60% among
dermatologists [19], and driving demand for computer-aided diagnosis (CAD)
systems. Current CAD approaches for skin lesion diagnosis predominantly focus
on lesion segmentation and classification [10], However, their data-driven nature
is constrained by the scarcity of public dermoscopic data [19]. Recent advances
in generative models provide promising solutions for medical image generation,
enhancing both performance and equity in downstream CAD tasks [14].
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Fig. 1. Overview of our proposed method including three technical contributions

Generative adversarial network (GAN)-based methods have been proposed
for dermoscopic image generation [20, 19, 2], yet struggle with fidelity and con-
trollability. Diffusion models (DMs) [21] address these limitations through high-
fidelity generation and text-guided control. While recent work finetunes DMs on
dermoscopic data [23, 9], the use of simplistic text prompts underutilizes their se-
mantic potential. Concurrently, lesion-mask generation frameworks designed to
augment segmentation datasets using GANs [1] or DMs [7] require task-specific
training, limiting multi-task applicability.

To overcome these limitations, we propose DiDGen, a novel and unified
framework leveraging pretrained Stable Diffusion (SD) model for dual-task der-
moscopic synthesis including dermoscopic images and lesion-mask pairs. First,
we introduce DermPrompt, a novel type of structured text prompt enriched
with clinical details annotated by large language models (LLMs), enabling fine-
grained visual representation learning. Moreover, we propose a novel paradigm
for image-mask pair synthesis that first builds semantic connections using an
attention-based alignment strategy during finetuning, and then generates images
paired with the corresponding masks using a training-free pipeline. Crucially, our
method only requires finetuning the SD once to realize both generation tasks,
and presents superior performance improvement for downstream tasks, offering
an efficient solution for dermoscopic dataset augmentation.
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2 Proposed Method

We begin by providing a brief overview of the SD model, and then introduce our
method that includes several novel techniques, as illustrated in Fig. 1.

2.1 Preliminary

The SD model encodes an input image x € R7*W>3 into a latent representation

z € RPXwxe Text prompts y are encoded into embeddings 7y using a pre-
trained text encoder [21]. The UNet denoiser ¢g is trained to predict the standard
Gaussian noise € given the corrupted latent z;, the timestep ¢ through:

Lyec = ]Ez,y,t,a I:”E — &9 (Ztv t, Te(y))”% (1>

The UNet integrates self-attention (SA) and cross-attention (CA) layers to cap-
ture the dependencies within the input data [21]. The SA layers capture the
intra-image correspondence while the CA layers learn image-text interactions.
The CA map Ac and SA map Ag can be calculated as follows:

Ac = softmazx (QIK;/\/;i) ,As = softmazx (QIK;/\/;i) (2)

where Q;, K, K7 are the query matrix, key matrix of z;, and query matrix of
To(y), respectively. d denotes the latent dimension.

2.2 Attribute-aware DermPrompt

Instead of using simplistic and fixed text prompts for training and sampling [23,
9], we propose DermPrompt, which utilizes LLMs to generate structured text
prompts that encapsulate clinical details. Specifically, we leverage Llama3 [8]
with specially designed text prompts for visual captioning of dermoscopic images,
and extract fine-grained attributes such as the shape, size, color, position of the
lesion, skin color, and the presence of hair and other markings. Subsequently,
we use Llama3 to further summarize and rephrase each image caption into a
single sentence containing fewer than 77 tokens, thereby adapting to the input
capacity of the SD model, as illustrated in Fig. 1(a).

Clinically detailed DermPrompt enhances semantic grounding via attribute-
aware training with dermatology-related lexicons. It directs the SD model to
learn fine-grained visual representations, thereby reducing ambiguity. Beyond
training, DermPrompt is also employed during sampling, with Llama3 generating
new prompts from the existing DermPrompt to further improve the fidelity,
diversity, and granularity of generated images.

2.3 Region-aware Finetuning of the SD model

During finetuning, we prepend a prefix “ An image of <lesion> on <skin>.”
to the DermPrompt, where “ <lesion>" and “ <skin>" are special tokens initial-
ized by text embeddings of tokens lesion and skin, referred to as Placeholder
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Tokens (P-Tokens). Their embeddings remain fixed; however, the corresponding
CA maps are extracted and used as input for the region-aware attention loss to
establish semantic connections between visual representations and text tokens.
The pre-trained SD model presents robust semantic connections between text
prompts and images through CA maps [3] after extensive pre-training. However,
in domain adaption scenarios where only limited data are available, it is challeng-
ing to establish such robust semantic connections between text and dermoscopic
images. To address this issue, we introduce a region-aware CA loss as follows:

1
Latin = B Z |Ac (vi, 2t) — MZ”% (3)

i€{l,s}

where A¢ (v;,2¢) is the CA map at a scale of 16 x 16 for token v; [11]. [ and s
denote the P-Tokens “ <lesion>" and “ <skin>", and M;, M are the correspond-
ing masks. Ly, penalizes the model to build semantic connections between the
P-Tokens and corresponded regions in dermoscopic images, thus termed region-
aware attention loss. The pre-trained SD model jointly optimizes L. and Lty
with a scaling coefficient « (empirically set to 0.1), the overall loss is given by:

L= Lrec + aLatt71 (4)

2.4 Training-free Pipeline for Lesion-mask Generation

Leveraging the semantic connections built by the region-aware attention loss, we
propose a training-free pipeline that generates diverse and precise lesion-mask
pairs by combining test-time layout guidance and attention-based annotation
[28,5,27,15]. A schematic diagram is shown in Fig. 1(c).

The sampling process of SD can be controlled by the classifier guidance tech-
nique to realize test-time conditional sampling [6]. Furthermore, classifier guid-
ance can be extended to layout guidance by regularizing attention maps with
masks M, thereby controlling the position, size, and shape of the target object
[5,28,18]. Our method considers both CA and SA regularizations. Specifically,
we extract the CA maps of P-Tokens and apply a Gaussian filter on them to
smooth the attention activation [3]. We formulate the CA regularization analo-
gously to Eq. (3), renaming the loss function from Lgty, to Lea in this context.
Lc 4 guides the lesion’s position, size, and shape to resemble the layout of the
condition mask M. While CA maps reveal the semantic connections, SA maps
capture pixel-wise visual correspondences in the latent feature map z;. There-
fore, regularizing SA maps further restricts the layout to that of M. For each
highlighted pixel p € M, we extract the corresponding SA map A% at a scale
of 32 x 32 [15] of the pixel p in z; with the same coordinate. We then regular-
ize A% to reduce attention connections outside the region specified by M. The
regularization term Lg4 is defined as [18]:

LSA—* Z Z ZAP“ APB AL-(1-M) (5)

ze{l s} pi€EM;
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where Ag’B is the background of Ag. Furthermore, since Lg can reduce extra-
neous attention connections outside the region defined by M, it is helpful for
mask annotation(see the ablation study in Section 3.4). During sampling, layout
guidance updates z; by minimizing both losses via gradient descent:

Z?t Rl el | VIR (LCA +LSA) (6)

where 7 is the learning rate empirically set to 20. Because classifier guidance
is most effective in the early sampling stage [5], we apply the guidance for the
first 50% timesteps, where the optimized latent map Z; substitutes for z; to
compute the subsequent latent map z;_1. By adjusting n and the guiding range,
our method can generate numerous images from the same input mask.

Nevertheless, achieving a precise pixel-level correspondence between the in-
put mask and the generated image remains challenging for test-time layout guid-
ance [5]. To address this challenge, we propose a method for simultaneously gen-
erating lesion-mask pairs by leveraging CA and SA maps in the final sampling
stage [27,15]. Observing that SA maps can sharpen the boundary of CA maps
[13], we derive the mask M for the generated lesion by multiplying the CA map
Ag; of the P-Token <lesion> with the SA map Ag;, followed by the application
of Otsu’s thresholding [17]:

ACS = (ASE)T . Acf:, M = Otsu (Acs) (7)

where 7 is an exponent empirically set to 4 [15]. Both maps are extracted at
the final sampling step (i.e., f = 0) where semantic and spatial information are
most abundant [16]. Finally, we post-process M first applying dilation followed
by erosion to fill small holes in the masks, as shown in Fig. 1(c).

3 Experiments

We perform three experiments to evaluate the general quality of generated im-
ages and their effect on classification, as well as the effect of generated lesion-
mask pairs on segmentation. We utilize the pre-trained SD v2.1 as the backbone,
and finetune it by 20000 steps with a learning rate of 1 x 10~ and a batch size
of 4. All experiments are conducted on an NVIDIA A100 GPU. We leverage the
ISIC 2018 dataset [4], which provides 2594 lesion-mask pairs (Task 1) and 10015
dermoscopic images across seven diagnostic classes (Task 3), enabling multi-task
training and evaluation including multi-class classification and segmentation.

3.1 General generation quality

We perform the general generation fidelity using Fréchet Inception Distance
(FID) and Multi-scale Structural Similarity Index (MS-SSIM) between 1000 syn-
thetic and real images from Task 1’s test set. Diversity is measured via Learned
Perceptual Image Patch Similarity (LPIPS) within the 1000 generated images.
Comparative baselines include SL-StyleGAN [19], PGAN [12], DreamBoooth
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Table 1. General genration quality of different models

SL-StyleGAN|PGAN |Finetune|DreamBooth|Ours-prefix|Ours-DermPrompt
FID | 9.69 86.17 | 12.76 29.04 9.26 8.96
MS-SSIM 1 0.34 0.37 0.39 0.40 0.38 0.39
LPIPS 1 0.56 0.36 0.55 0.48 0.56 0.58

[22], and standard SD finetuning, all trained on Task 1 data. Notably, we em-
ploy text-only conditioning in this experiment, and apply the prefix as prompt for
DreamBoooth and standard finetuning. As shown in Table 1, our method with
DermPrompt achieves state-of-the-art FID and LPIPS scores, with near-optimal
MS-SSIM score. Remarkably, even when using only the prefix as the prompt dur-
ing sampling, our approach maintains competitive performance, demonstrating
robust representation learned with DermPrompt.

3.2 Dataset Augmentation for Multi-class Classification

To assess the capacity of generative models for capturing clinically relevant fea-
tures, we evaluate their ability to generate images across distinct diagnostic cate-
gories. We train our proposed method and the baselines introduced in Section 3.1
on Task 3 data while excluding the overrepresented “NV” class (66.9% preva-
lence) to mitigate bias. For the remaining six categories (MEL, BCC, AKIEC,
BKL, DF, VASC), we generate 1000 samples per class. Figure 2(a) presents sam-
ples generated by different models. The results indicate that GAN-based models
exhibit limited fidelity and insufficient representation of diagnostic characteris-
tics, whereas diffusion-based models demonstrate superior fidelity and effectively
capture diagnostic characteristics.

Subsequently, we train three classifiers, VGG16, DenseNet121, and ViT, us-
ing both the original training set and an augmented training set. Specifically,
the augmented set comprises the original set and 6000 synthesized images (1000
per category). The original validation set is employed for early stopping dur-
ing training, with a patience of 10 epochs. Classifier performance is evaluated
on the testing set using micro precision, recall, and F1 score, as shown in Ta-
ble 2. The results indicate that when the dataset is augmented by our method,
DenseNet121 and ViT achieve optimal performance. We also perform paired t-
tests on the classification results from classifiers trained on the original set and
augmented set by our method. The calculated p-value is 1.35 x 1073, indicating
the robustness of our method.

3.3 Dataset Augmentation for Segmentation

We evaluate the quality of lesion-mask pairs by training two segmentation mod-
els, DCSAU-Net [29] and XB-Former [25], on the original training set of Task
1 and augmented sets, using the original validation set for early stopping with
a patience of 20 epochs. We compare our method with training-based image-
translation models (Pix2PixHD [26], ControlNet [30]), and training-free layout
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Table 2. Performance of classifiers trained on original and augmented datasets. Note
that DSNet, DP are abbreviations of DenseNet121, and DermPrompt, respectively.

Model Precision 1 Recall 1 F1 Score 1
VGG16|DSNet121| ViT |[VGG16|/DSNet121| ViT [VGG16|DSNetl121| ViT

Original set | 0.782 0.811 |0.834| 0.775 0.813 |0.834| 0.775 0.811 |0.830

SL-StyleGAN| 0.790 0.801 |0.831| 0.792 0.804 |0.832| 0.788 0.804 |0.832

PGAN 0.793 0.817 ]0.838| 0.791 0.822 |0.841| 0.786 0.816 | 0.837
Finetune 0.807 | 0.823 |0.840| 0.808 0.822 |0.843| 0.803 0.819 |0.840
DreamBooth | 0.797 0.798 0.825| 0.795 0.802 |0.831| 0.793 0.798 0.824
Ours-DP 0.805 0.826 |0.846| 0.805 0.828 |0.847| 0.801 0.825 |0.845

Real image

PGAN

o
2
2
3
£
i

DreamBooth

Fig. 2. Qualitative comparison of different models in (a) generation of dermoscopic
images with different diagnoses and (b) generation of lesion-mask pairs

guidance methods (ZestGuide [5], Attn-Refocus [18]). To avoid information leak-
age, we first apply our method to generate 2500 lesion-mask pairs guided by
masks from the training set. The generated masks retain the core structure of
the original training masks but introduce minor differences, ensuring they can
be safely used as inputs for baseline models without risking data leakage.

As shown in Fig. 2(b), training-free methods struggle to replicate precise
mask layouts, resulting in minor discrepancies in the generated lesions. In con-
trast, training-based models capture layout details accurately and produce le-
sions with precise shapes, but they require significant computational resources
for training. Our method generates highly consistent lesion-mask pairs without
additional training, offering an eflicient solution for augmenting segmentation
datasets. Furthermore, we evaluate segmentation performance using the Dice
coefficient (Dice) and Intersection over Union (IoU) on two scales, which are a
small scale (1000 samples from the training set, S1;) and a large scale (the full
training set, Sa5x), thereby demonstrating the effect of dataset augmentation
under varying data scarcity. The results in Table 3 show that both segmen-
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Table 3. Performance of segmentation models trained on original and augmented
datasets. Note that the Red font denotes loU and the Blue font denotes Dice.

Model Training DCSAU-Net XB-Former

-free S1k Sk + 2.5k | So.5k + 2.5k | Sik Sik + 2.5k | So.51 + 2.5k
Pix2PixHD X 0.723/] 0.731/0.841 | 0.778/0.874 |0.773/| 0.790/0.881 | 0.819/0.890
ControlNet X 0.836 | 0.742/0.848 | 0.775/0.871 | 0.868 [0.796,/0.884| 0.823/0.891
ZestGuide VA Sa5k | 0.727/0.839 | 0.764,/0.865 | S35, | 0.776/0.872 | 0.816,/0.883
Attn-Refocus v 0.768/] 0.740/0.847 | 0.772/0.869 [0.810/| 0.784/0.876 | 0.811/0.885
Ours VA 0.867 |0.756,/0.858|0.788,/0.880| 0.884 | 0.788,/0.880 |0.826/0.895

tation models exhibit improved performance on the augmented datasets. Our
dataset augmentation method enables DCSAU-Net to achieve the best perfor-
mance at both scales, and allows XB-Former to obtain the best performance
at the large scale and the second-best performance at the small scale, with a
marginal performance gap compared to ControlNet and results comparable to
Pix2PixHD. Furthermore, the p-value from paired t-tests on the segmentation
results is 6.64 x 10729, reflecting the robust gain benefited from our method.

3.4 Ablation Study

First, we verify the region-aware attention loss Lg¢t, by comparing CA maps
of the P-Tokens, finding that CA maps can delineate lesion and skin regions
when the model is finetuned with L, (Fig. 3(a)). Furthermore, we clarify that
the CA guidance Lo 4 can increase the generation diversity, as evidenced by a
higher LPIPS score for masks with Lo 4 (0.403) compared to those without Lo
(0.172). Finally, SA guidance Lgy can prevent mask thresholding failures. As
shown in Fig. 3(b), applying Lga corrects the lower values in Acg map caused
by artificial marks that may confuse Otsu’s thresholding.

Image

CA map-<lesion> Mask

(a) (b)

Fig. 3. Ablation studies on (a) region-aware attention loss and (b) SA guidance

CA map-<skin>

Image

w/o SA

w/o region-
aware loss

w/ region-
aware loss
w/ SA

4 Conclusion

We introduce DiDGen, a novel diffusion-based model for dermoscopic genera-
tion. Specifically, we propose DermPrompt, a structured text prompt paradigm
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containing rich clinical details annotated by LLMs. Additionally, our approach
generates accurate lesion-mask pairs by incorporating a region-aware attention
loss during finetuning and integrating test-time layout guidance with attention-
based mask annotation. With a single training run, DiDGen can produce both
dermoscopic images and lesion-mask pairs, saving computational resources. Ex-
tensive experiments demonstrate that our model delivers superior performance
improvements for downstream tasks compared to baseline models.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.
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