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Abstract. The diffusion of minimally invasive, endovascular interven-
tions motivates the development of visualization methods for complex
vascular networks. We propose a planar representation of blood vessel
trees which preserves the properties that are most relevant to catheter
navigation: topology, length and curvature. Taking as input a three-
dimensional digital angiography, our algorithm produces a faithful two-
dimensional map of the patient’s vessels within a few seconds. To this
end, we propose optimized implementations of standard morphological
filters and a new recursive embedding algorithm that preserves the global
orientation of the vascular network. We showcase our method on peroper-
ative images of the brain, pelvic and knee artery networks. On the clinical
side, our method simplifies the choice of devices prior to and during the
intervention. This lowers the risk of failure during navigation or device
deployment and may help to reduce the gap between expert and common
intervention centers. From a research perspective, our method simulates
the cadaveric display of artery trees from anatomical dissections. This
opens the door to large population studies on the branching patterns
and tortuosity of fine human blood vessels. Our code is released under
the permissive MIT license as part of the scikit-shapes Python library
(scikit-shapes.github.io).

Keywords: Vascular trees - Visualization - Computational anatomy -
Computer-assisted intervention - Interventional radiology.

1 Introduction and Related Works

Endovascular Interventions. Unfolding curved anatomical structures for vi-
sualization on two-dimensional displays is a fundamental task in medical imag-
ing, with applications ranging from the detection of rib fractures [2I] to the
planning of tumor ablations [I3]. Meanwhile, the emergence of endovascular in-
terventions has sparked increasing interest in the detailed mapping of complex
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arterial networks, understood as modern highways for surgeons, cardiologists
and interventional radiologists [II7)22I24]. Our work lies at the intersection of
these developments: we focus on generating planar representations of intricate
vascular structures to facilitate catheter navigation during interventions. Specif-
ically, we aim to embed vascular networks in 2D while preserving key geometric
features for effective endovascular guidance: the vessel lengths and curvatures.

Vessel Tree Analysis and Visualization. The creation of blood vessel maps
is an active field of research; we refer to [3] for a recent overview. Our work places
a strong emphasis on vessel lengths and curvatures, features that are critical for
catheter navigation but often overlooked in existing methods. This focus presents
unique challenges: while efficient methods can embed spatial graphs in the plane
without intersections [I3I19], doing so while preserving the length and tortuosity
of curves is not straightforward.

Several techniques have been proposed to produce geometry-accurate pla-
nar representations of vascular networks. Curved planar reformations [TOJIT25]
generate 2D slices from volumetric images via non-linear projection along vessel
centerlines, preserving local geometry and surrounding context. However, they
require complex decluttering and cannot guarantee intersection-free layouts. Al-
ternatively, conformal mappings [26] flatten the blood vessels while preserving
boundary properties. Yet, these approaches neglect the global vascular structure,
making it unsuited to our purpose. A last approach, arguably the closest to our
objective, consists in building the embedding by joining and untangling multiple
local linear projections of the vessel tree [7U14], offering a good balance between
geometric fidelity and global readability.

Unfortunately, these techniques are not fully adapted to our problem. They
usually neglect the branching angles at the vessel junctions, which are of critical
importance in endovascular navigation. More importantly, current methods do
not scale well with large vascular systems: for instance, [25] requires 12 min-
utes to process a tree with 72 branches, while [7I14] needs several minutes for
networks with a few thousand nodes. In contrast, the vascular trees we analyze
are significantly more complex, featuring dense branching patterns and intricate
topologies comprising over 10,000 nodes and more than 500 branches.

internal iliac arteries
Qternal iliac arteries
femoral arteries

Fig. 1. Left: Our method takes as input a three-dimensional angiogram, such as this
scan of the pelvic region. Middle: First, we apply fast morphological filters to segment
the blood vessels. Right: Then, our novel tree embedding algorithm creates a planar
vessel map that is optimized for the planning of endovascular interventions.
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Contributions. To tackle this challenge, we propose an algorithm that pro-
duces clear visualizations of complex vascular trees while preserving vessel cur-
vature as accurately as possible. Our method generates qualitatively satisfying
layouts in a few seconds, even in our most challenging cases. The resulting embed-
dings contain no intersections, exactly preserve vessel lengths, and maintain the
correct angles at the majority of branching points. Finally, we provide a portable
code that implements our full pipeline as part of the scikit-shapes Python library
(scikit-shapes.github.io).

2 Methods

Our method takes as input an acyclic vascular network understood as a tree
T = (V, E) whose root node v,0t corresponds to the blood source. We identify
each vertex v € V with its vector of 3D coordinates v € R3. We also require an
estimate of the local vessel radius at every vertex.

Because most vertices have exactly two neighbors, we can decompose the
tree into a set of contiguous branches B = (by,...,by) that are topologically
equivalent to segments. This induces a coarse-grained directed tree structure
Teoarse = (J, B) where J is the subset of vertices with a degree different from
two — namely, the root, junctions, and leaves. These vertices are connected by
the branches in B. Our method consists of two main steps:

1. A recursive planar embedding of the branches of Tcoarse Without intersections
that prioritizes the preservation of the angles at junctions;
2. A refinement step using a force-directed scheme to enhance the final layout.

This section provides a detailed overview of our method. We begin by describing
the data and preprocessing steps, followed by a formal definition of the planar
embedding problem using an angular reparametrization of vertex positions. We
then use this angular representation to define a target curvature at each tree node
and conclude with a description of the two steps of our embedding algorithm.

Data and Preprocessing. We work with three-dimensional angiograms ac-
quired via 3D X-ray imaging — more precisely, a Philips Azurion system follow-
ing a Cone Beam CT (CBCT) protocol. Voxel values are expressed in Hounsfield
units and blood vessels are highlighted using a contrast agent. Motivated by ap-
plications in stroke surgery, our primary focus is on cerebral vascular networks.
The injection protocol selectively highlights one hemisphere of the brain arterial
network, allowing us to assume a tree-like topology. To showcase the generaliz-
ability of our method, we also apply it to arterial networks around the pelvis
and knee (see figs. and. This study was approved by two institutional review
boards (Registre général des traitements de 1’Assistance Publique-Hoépitaux no.
20220128085623 and CERAR Institutional Review Board 00010254-2022-025) in
accordance with the Declaration of Helsinki.
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As an initial processing step, we convert the 3D images into graphs using effi-
cient implementations of classical image processing techniques: hysteresis thresh-
olding [2], signed distance transform, Frangi filtering [4], and skeletonization [18].
To correct topological artifacts such as small cycles or multiple disconnected
components, we compute the minimum spanning tree of the graph [12/23]. We
illustrate this learning-free pipeline in fig. [2] Although not state-of-the-art, this
simple method produces satisfying segmentations for our high-resolution data.
Leveraging PyTorch [20] and the Taichi library [§], our code is able to process
images of size 500 x 500 x 500 within seconds.

Angular Parametrization. The planar embedding task consists in associating
a 2D position 7 € R? to each vertex v € R? of the three-dimensional vascular
tree 7. In order to guarantees the preservation of vessel lengths, we propose
to use an intermediate representation via real-valued angular coordinates 0(v).
Placing the root node at the origin so that T..0t = (0,0), we compute the node
positions ¥ € R? from the values of 6(v) recursively with:

for all edge (v —v") € E, ¥ = U+ |[v—1|[gs - (cosf(v'), sinf(v")) . (1)

Computing Signed Curvatures on the Vessel Tree. Since endovascular
navigation is strongly influenced by the angles at vessel junctions and the ac-
cumulation of torque along the catheter, it is important to reflect the original
3D vessel curvatures in the 2D embedding. To this end, we impose a constraint
on bending angles: for any three consecutive nodes v — v — v”, the absolu_t(;

difference |0(v) — 6(v’)| should match the angle between the 3D segments vv’

and v'v”. To capture the correct global shape of the vessel, we must also assign
the appropriate sign to this difference, indicating a left or right bend in the 2D
plane. Following [6], we use parallel transport to propagate a reference normal
vector 77 (v) along the tree 7 and define the bending direction using the sign of

__)
the dot product 77 (v) - vv’ (see fig. . This allows us to define a signed angular
curvature k(v) at each vertex. Preserving the curvature of blood vessels in the
planar visualization is then equivalent to making sure that:

for all edge (v —v") € E, 0(') = 0(v)+ &) . (2)

Intersection-free Planar Layout. In general, the constraint in eq. cannot
be satisfied simultaneously for all vertices without causing edge intersections. As
a first step that we illustrate in fig. [4 we compute an embedding that guaran-
tees no intersections and attempts to preserve angle variations around branching
points. To this end, we work with the coarse-grained structure 7¢oarse and recur-
sively tesselate the embedding plane in polygonal regions U, that contain the
embedding locations of all vertices downstream of point v.

First, we associate the upper half-plane U, ., = R x Rx( to the root node
embedded at the origin point Tyoot = (0,0). Then, working recursively at ev-
ery junction node v, we embed downstream branches by, ...,b; by integrating
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eq. . This exactly preserves vessel curvatures until a collision is detected, as
highlighted in red in fig. [d] Such collisions can occur either with previously em-
bedded parts of branches by, ..., b or with the boundary of the region U,. When
a collision is encountered, we embed the remaining portion of the affected branch
as a straight line. The domain U, is then subdivided into k& non-overlapping sec-
tors Uy, ..., Uy associated with the endpoints of the branches by, ..., by. These
sectors define feasible regions for the subsequent recursive calls at the child
nodes vy, ..., v}, in Teoarse.- We show a typical output of this recursive embedding
method on the left panel of fig. [}

Force-directed Layout Refinement. This initial embedding straightens dis-
tal vessels. To enhance clarity, we denote by 6y(v) the angles produced by our
recursive embedding algorithm and iteratively apply the following update:

et+1(U) — et(v) + )\rep . Frep(v) + Abend * Fhend (U) + Astruct * Fstruct (U) 5

where Fi.p, is a repulsive force between nearby vertices that prevents overlaps,
Frena bends the angles towards their true curvature and Fggpuey maintains the
global structure of the initial embedding. We use PyTorch to implement the
following functions at every node v with parent p and vessel radius r:

v :_L 1 @ cexp (=1 T—7
Frep(®) &%(v)él(”vv’||§2+||v—v'|m> e (=7 7= Vlle) | -
Frena() = - [5(0) = (0r(2) — 0:(p))] + Frwuee (2) = Bol0) — ()

Flep is the sum of two forces operating at different scales: the first prevents vessel
crossings while the second spreads the branches to enhance their readability. The
exponential factor limits the repulsion range for numerical stability. The term
r# in Fypenq prioritizes the curvature of the largest vessels over the finest ones. A
typical result is shown on the right panel of fig. |§| with Arep = 25, Apena = 0.4,
Astruct = D - 1075, o = 0.1, ¢ = 200 and it = 1. These parameters influence
the embedding style and should be tuned according to the anatomical region’s
characteristics, such as average vessel length and density of ramifications.

3 Results and Conclusion

Surgical Planning and Anatomical Comparisons. As illustrated in fig. [6]
our method turns peroperative three-dimensional angiograms of the brain arte-
rial network into legible planar representations. Unlike preexisting approaches,
our layout preserves junction angles, vessel lengths and curvatures. This is es-
pecially relevant for interventional radiology; at a glance, a physician can now
understand the shape of the path to be followed. This vessel map is thus ide-
ally suited to guide the choice and thermo-forming of a catheter with a suitable
tip and stiffness. Crucially, our implementation is released under the permissive
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Fig. 2. Left: Three-dimensional cerebral angiogram. Middle: The segmented graph.
Shades of red encode the estimated vessels radius, blue edges correspond to cycles and
green edges belong to small disconnected components. Right: The final vessel tree.

Ti{tk)

Fig. 3. Left: Flowing from the root node vroot, we define the point curvature x(v) as the
angle between two successive segments of the curve. We transport a reference normal
vector 7 (v) from vreor as in [6] and use the sign of the dot product 7 (v) - v0 to
orient the curvature x(v’). Right: We display the values of x(v) on a typical example:
red segments are associated to positive values, i.e. left turns in our planar layout; blue
segments correspond to negative values, i.e. right turns.

Fig. 4. At every new junction v, we draw downstream branches b, . .., by by integrating
eq. (2) until colliding with the boundary of U, or with any other branch (red nodes).
We embed the rest of the branch as a line, subdivide the domain U, in angular sectors
Ui, ...,Ux and proceed iteratively.
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Force-directed
layout refinement

Fig. 5. Left: Result of the recursive embedding for the brain artery tree of fig. [2[ (run-
ning time: 1s). Right: Final embedding, after 300 steps of iterative refinement (running
time: 2s). The layout closely mimics pictures of genuine anatomical dissections [9], with
the aneurysm clearly visible (black square). For the sake of clarity, we display both in-
ternal (top) and superficial (bottom) arteries, artificially tying them together around
the root node (black disk).

MIT license and runs in less than ten seconds on a standard laptop CPU: this
opens the door to its integration in the interventional workflow.

Our method also enables the visualization of detailed images of the cere-
bral vascular system that may contain very distal vessels. Due to their intricate
geometries, the original three-dimensional volumes are difficult to read even for
experts: our planar layouts solve this issue at a minimal computational cost. Our
method is thus similar to Cerebrovis [19], but with a focus on geometry instead
of pure topology. In fig. [7, we display the brain artery networks of four patients
that underwent surgery for aneurysms: we believe that our vessel map will help
physicians formulate novel hypotheses on, for example, risk factors for aneurysms
or thromboses, which may then be validated by a morphometric study [5].

Robustness and Quantitative Evaluation. Although vessel segmentation is
an active research topic [16], we found that our learning-free pipeline works sur-
prisingly well on peroperative three-dimensional angiograms. Notably, applying
a vesselness filter to the signed distance function instead of raw intensity values
is enough to prevent the “fusion” of vessels that run parallel to each other such
as the left and right anterior cerebral arteries. This is testament to the superior
quality of data that is acquired in an interventional context, with high resolu-
tion devices and no motion artifacts. Although our work was first motivated by
cerebral interventions, we stress that our method performs just as well on other
anatomical regions such as the pelvis of fig. [l and the knee of fig. [§]

In the examples of figs. 5| to [8] our method preserves, within £10°, 75% to
90% of junction angles between vessels with radius larger than 2 mm. This pro-
portion drops to between 45% and 55% for smaller vessels, which are necessarily
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Fig. 6. Left: Segmented brain artery tree in 3D, with an aneurysm (black square). Top:
Path from the root node to the aneurysm. Right: Planar layout, colored by curvature.

Fig. 7. Untangling four cerebral vascular trees that include the left carotid artery
(vellow), anterior cerebral artery (green) and middle cerebral artery (orange).

Fig. 8. Left: Three-dimensional angiography of the popliteal artery across the knee.
Middle: Segmented artery tree, colored by the vessel radius. Right: Planar layout.
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compressed in the 2D embedding. Likewise, the curvature constraint of eq. (2))
is satisfied up to 2.5° on average for large vessels and 4.0° for smaller vessels.
This should be compared with the standard deviation of 5.2° for the bending
angles k(v'). These results highlight our method’s ability to preserve the geome-
try of major vessels while tolerating some loss of accuracy in finer vessels whose
detailed shapes are less clinically relevant.

Limitations and Future Works. Going forward, we believe that our method
could benefit from three major improvements. First, going beyond scalar radii to
handle non-circular vessel sections would be desirable, especially in the context
of interventions on aneurysms and thromboses. Second, we intend to combine
our embedding algorithm with state-of-the-art segmentation networks to handle
more common but challenging data, such as routinely acquired magnetic reso-
nance images. Finally, extending our method to arterial networks that contain
cycles (such as the circle of Willis) would be a significant breakthrough; this is a
fundamental research problem, for which we may leverage recent insights from
the computer graphics literature [15].
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