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Abstract. Multi-modal medical image segmentation leverages comple-
mentary information across different modalities to enhance diagnostic
accuracy, but faces two critical challenges: the requirement for extensive
paired annotations and the difficulty in capturing complex inter-modality
relationships. While Active Learning (AL) can reduce annotation burden
through strategic sample selection, conventional methods suffer from un-
reliable uncertainty quantification. Meanwhile, Vector Quantization (VQ)
offers a mechanism for encoding inter-modality relationships, yet existing
implementations struggle with codebook misalignment across modalities.
To address these limitations, we propose a novel Vector Quantization -
Bimodal Entropy-Guided Active Learning (VQ-BEGAL) framework that
employs a dual-encoder architecture with VQ to discretize continuous
features into distinct codewords, effectively preserving modality-specific
information while mitigating feature co-linearity. Unlike conventional
AL methods that separate sample selection from model training, our
approach integrates feature-level uncertainty estimation from cross-modal
discriminator outputs into the training process—strategically allocating
samples with different uncertainty characteristics to optimize specific
network components, enhancing both feature extraction stability and
decoder robustness.Experiments on benchmark datasets demonstrate that
our approach achieves state-of-the-art performance while requiring signif-
icantly fewer annotations, making it particularly valuable for real-world
clinical applications where labeled data is scarce. The code is available at
https://github.com/xf-DU/vg-begall
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1 Introduction

Multi-modal medical image segmentation with cross-modal assistance utilizes

auxiliary modalities (e.g., MRI) to assist primary modality (e.g., CT) segmenta-
tion, which is critical in computer-aided diagnosis [I]. Although incorporating
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Fig. 1: Key challenges in multi-modal medical image segmentation. (A) The
t-SNE visualization shows CT and MR features as separated clusters. This is
problematic, as shared anatomical features should overlap between modalities
while only modality-specific characteristics remain distinct. This improper feature
distribution hinders the model’s ability to leverage complementary information
across modalities. (B) Uncertainty Analysis: The uncertainty score distri-
butions between normal and noisy conditions (Gaussian perturbations of input
features) reveal how current active learning methods fail in cross-modal settings:
their noise sensitivity produces unreliable uncertainty estimates, preventing effec-
tive uncertainty estimation for practical multi-modal medical imaging challenges,
especially with degraded or noisy modalities.

auxiliary modalities can improve segmentation accuracy, as demonstrated in
brain tumor and cardiovascular assessments [I2], current methods require both
modalities during training and inference. This dependency is impractical given
the high cost and absence of certain modalities in clinical settings [112].

The core challenge lies in effectively disentangling shared anatomical features
from modality-specific characteristics while preserving complementary informa-
tion. Simple multimodal fusion strategies, such as early concatenation, fail to
capture nonlinear relationships between modalities, often resulting in the loss of
unique complementary information [3l4]. Spatial misalignment and variability
in modality quality further exacerbate these issues, as strong linear correlations
hinder the model’s ability to disentangle shared distinct features [5l6].

Recent work in vector quantization (VQ)-based methods has shown promise
in multi-modal feature representation learning by discretizing continuous feature
representations into codewords [7I8]. However, as shown in Fig. 1(A), existing VQ
approaches often suffer from vector mismatch - where similar anatomical patterns
across modalities are encoded with misaligned latent codes - and struggle to
disentangle shared anatomical features from modality-specific features, leading to
the loss of complementary information. This disentanglement is essential for multi-
modal learning, enabling models to leverage common structural patterns while
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preserving modality-specific diagnostic details, thus ensuring reliable performance
across varying imaging conditions.

These multi-modal representation challenges are exacerbated by limited anno-
tated medical data, making active learning (AL) an effective approach to select
informative samples for annotation while maximizing model performance [9]. Al-
though AL reduces annotation costs, conventional strategies [10] face significant
limitations in multi-modal settings. As illustrated in Fig. 1(B), these methods
yield unreliable uncertainty estimations when modalities are affected by noise,
with altered distributions between normal and noisy conditions demonstrating
their inability to maintain consistent sample selection in real-world multi-modal
scenarios where image quality varies. Furthermore, existing AL approaches typ-
ically decouple sample selection from model training, resulting in suboptimal
performance as they apply high-uncertainty samples uniformly without addressing
the distinct learning objectives of different network components [I1112].

To address these challenges, we propose a novel VQ-BEGAL framework that
integrates vector quantization with bimodal entropy-guided active learning for
multimodal segmentation. Our dual-encoder architecture uses VQ to discretize
continuous feature into distinct codewords, mitigating feature co-linearity while
preserving modality-specific details critical for capturing non-linear interactions
between modalities. Unlike conventional AL methods that separate sample se-
lection from model training, we incorporate sample selection into the training
process itself. We leverage uncertainty estimates from fused multi-modal features
to selectively train different network components, utilizing low-uncertainty sam-
ples with complementary information to optimize encoder for robustness, while
high-uncertainty samples with redundant patterns guide the decoder in capturing
modality-specific features. This integrated approach not only reduces labeling
costs but also enables more effective multi-modal feature learning.

Our contributions are threefold: (i) we design a dual-encoder architecture with
vector quantization that addresses vector mismatch through modality-specific
feature extraction and unified feature space learning; (ii) we propose a novel
VQ-BEGAL framework that integrates vector quantization for feature disentan-
glement, paired with an active learning strategy that embeds sample selection
directly into the training process and strategically allocates different uncertainty
samples to train specific network components; (iii) we conduct extensive exper-
iments on two public datasets, demonstrating that our approach outperforms
state-of-the-art methods across various multi-modal segmentation benchmarks.

2 Methodology

2.1 VQ-BEGAL Framework Overview

Our VQ-BEGAL framework features a dual-encoder architecture (Fig. 2) that
processes multi-modal inputs through specialized encoders. The framework im-
plements active learning by selecting samples based on discriminator-derived
uncertainty scores. Higher uncertainty scores indicate discriminator difficulty in
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Fig. 2: Overview of our VQ-BEGAL framework. The architecture processes multi-
modal inputs through specialized encoders (E., E,,) and vector quantization
(V Q). The discriminator (D) generates uncertainty scores guiding active learning
sample selection (top path), while the main segmentation workflow (bottom path)
produces outputs from concatenated features.

distinguishing modalities, suggesting redundant information across them, guiding
low-uncertainty samples toward encoder optimization. Conversely, lower uncer-
tainty scores reflect confident predictions with potentially complementary modal
information, allocating high-uncertainty samples to enhance decoder robustness.
Notably, unlike traditional multi-modal methods, our approach requires no spatial
correspondence between modalities, making it more flexible for real-world clinical
applications.

2.2 Cross-Modal Auxiliary Feature Learning with VQ

We implement a feature learning strategy with shared VQ between the primary
and auxiliary modalities to effectively disentangle shared anatomical features from
modality-specific characteristics. The proposed strategy addresses the feature
co-linearity and vector mismatch challenges identified in Fig. 1(A).

Dual-Stream Feature Extraction: Modality-specific encoders extract comple-
mentary features from primary (e.g., CT) and auxiliary (e.g., MRI) modalities:

Fo=FE.(z.), Fpn=FEn(Tm) (1)

where F, € REXHXW and F,, € RE*H*W denote CT and MRI feature maps
respectively, with C' channels and spatial dimensions H x W. E, and F,, represent
the primary modality and auxiliary modality encoders respectively, while x. and
Z, are the corresponding input images.
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Enhanced Vector Quantization: We utilize a codebook with K = 1024 entries,
replacing standard Euclidean distance with cosine similarity to better capture
anatomical feature relationships:

Z €L

M- 8) = el @

where z represents an input feature vector, ey is the k-th codebook entry, and
m measures their similarity.
The quantized features are obtained through:

ze = VQ(F,), zm=VQ(Fn) (3)

where z. and z, are the quantized representations of CT and MRI features, VQ
represents the vector quantizer.

2.3 Bimodal Entropy-Guided Active Learning

We propose Bimodal Entropy-Guided Active Learning (BEGAL), integrating
sample selection into the training process to overcome unreliable uncertainty
estimation shown in Fig. 1(B). We leverage a discriminator-based approach to
estimate uncertainty and select samples for annotation.

Discriminator Architecture: The discriminator D is implemented as a binary
classification network that determines whether the vector-quantized features
come from the primary modality or auxiliary modality:

p = D(zc, 2m) (4)

where p is the discriminator’s predicted probability for each modality class, D
represents the discriminator, and z. and z,, are the quantized features
Uncertainty Estimation: After the discriminator processes the quantized
features z. and z,, from each modality, we compute the uncertainty score based
on the output distribution:

C
Suncertainty(wm xm) = H(p) = - sz Ingz (5)
=1

where H(p) represents the entropy of the probability distribution, and Syncertainty
is the resulting uncertainty score.

Bimodal Sample Selection: We select both high and low uncertainty samples
for different training purposes based on uncertainty as an indicator of cross-modal
information redundancy. High uncertainty samples, where the discriminator
struggles to distinguish between modalities, contain redundant information that
provides stable and consistent training signals ideal for decoder optimization.
Low uncertainty samples, with confident discriminator predictions, contain rich
complementary cross-modal information suitable for encoder training:
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Shz’gh = arg max E Suncertainty (xm zm) (6)
SCu,|S|=n
(ﬂic,wm)ES
Slow = arg min Suncertainty (l’c, xm) (7)
ScUl,|S|=n Z
(Te,xm)€ES

where U is the unlabeled pool of samples, and n = g is determined by dividing

the annotation budget B at each active learning round equally between high and
low uncertainty sample sets.

High-uncertainty samples (Spign) with complementary cross-modal informa-
tion train the decoder (D, ), while low-uncertainty samples (Sjo,) with redundant
information stabilize encoder training (E. and E,;,).

Budget Management: The labeled set £ expands with newly selected samples:

L=LU (Shigh U Slow) (8)

updating the budget:
b=b+2n (9)

where b tracks spent annotations against total budget B.
The active learning process terminates when either Dice score plateaus or
budget B is exhausted.

3 Experiments

3.1 Datasets

We evaluate our method on two widely-used multi-modal medical image datasets:

CHAOS [13]: The Combined Healthy Abdominal Organ Segmentation
dataset comprises 40 paired CT-MRI scans, with expert annotations for the liver,
kidneys, and spleen.

AMOS 2022 [14]: The Abdominal Multi-Organ Segmentation dataset con-
sists of 500 CT and 100 MRI scans acquired from multiple medical centers.

We focus on liver segmentation to reduce computational burden and ensure
consistent cross-dataset evaluation. Liver segmentation represents a clinically
relevant yet challenging task due to variations in contrast, texture, and anatomical
boundaries across imaging modalities, making it suitable for validating our multi-
modal feature learning approach.

3.2 Implementation Details

We implemented our framework using PyTorch with a VQ-VAE architecture.
Our active learning strategy independently selects 50 2D slices extracted from
3D patient data for encoder training and another 50 slices for decoder training in
each round, continuing for 10 rounds. Our training objective combines multiple
loss components with balanced weights: segmentation loss (a1 = 5), vector
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quantization loss (ae = 0.5), discriminator loss (a3 = 0.25), and commitment
loss (g = 0.2). The higher weight on segmentation loss ensures task-specific
performance while other components provide effective regularization for multi-
modal feature learning.

3.3 Comparison with State-of-the-art Methods

We compare our method with several state-of-the-art active learning approaches.
As shown in Table[l] our method consistently outperforms existing approaches.
The improvement stems from our dual-encoder architecture with vector quanti-
zation that addresses vector mismatch while preserving modality-specific infor-
mation, and our discriminative feature learning strategy.

Table 1: Comparison of different active learning methods for liver segmentation on
CHAOS and AMOS datasets. Results are reported with 40% annotation budget.

Method CHAOS AMOS

Dice (%) HD95 (mm) Dice (%) HD95 (mm)
CT-only 78.254+1.25 13.15+0.95 77.9241.30 13.45+0.98
Random 79.454+1.23 12.82+0.92 78.9241.28 13.124+0.95
Max Entropy [I5/16] 80.124+1.15 11.45+0.85 79.65+1.20 12.85+0.88
MC Dropout [17] 81.854+1.08 10.21+0.78 80.18+1.15 11.5240.82
Coreset [18] 82.244+1.12 9.94+0.82 81.75+1.10 10.28+0.80
BADGE [19] 83.68+1.05 9.721+0.75 82.124+1.08 9.9540.76
TAAL [20] 84.954+1.02 9.58+0.72 83.45+1.05 9.6840.73
MVAAL [21] 85.02+1.04 8.831+0.67 84.0240.99 8.7940.77
BEGAL (Ours) 87.30+0.95 8.2140.68 85.4340.98 8.3540.70

HD95: 95th percentile Hausdorff Distance

3.4 Ablation Studies

To validate the effectiveness of our proposed method, we conduct ablation studies
from three aspects:

Table 2: Ablation study on different components under various annotation ratios.
Results are reported in Dice score (%).

Method 20% 30% 40% 50%
Baseline (U-Net) [22] 75.45 78.82 81.25 83.48
Baseline+EGAL 77.68 80.45 83.82 85.65
Baseline+VQ+Random 78.92 81.25 84.45 86.18
Baseline+ BEGAL 79.45 82.85 85.78 87.45
Baseline+VQ (512 codes)+BEGAL 80.82 83.15 86.05 88.68
Baseline+VQ+BEGAL (Ours) 82.25 84.45 87.30 89.15
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Quantitative Analysis: Table [2] shows each component’s contribution to
the performance. We use the standard U-Net [22] architecture as our baseline
segmentation model. Adding Entropy-Guided Active Learning (EGAL) to the
baseline yields a consistent improvement of approximately 2.2-2.6% in Dice
score across all annotation ratios, demonstrating the value of entropy-guided
active learning. The EGAL differs from our BEGAL approach by using only the
highest uncertainty samples for end-to-end model training rather than separately
optimizing encoder and decoder components. When we incorporate VQ with
random sampling, we observe a further improvement of 1.2-1.5%, highlighting the
effectiveness of our discrete representation learning. The combination of baseline
with BEGAL alone shows a substantial gain of 3.5-4.5% over the baseline method.
Notably, when both VQ and BEGAL are integrated (our full method), we achieve
the highest performance with substantial improvements of 5.6-6.8% over the
baseline, indicating strong synergy between our discrete representation learning
and bidirectional entropy-guided active learning components.

(A) Baseline VQ (B) VQ with AL (C) Complete Method

T-SNE 2

T-SNE 1 T-SNE 1 T-SNE 1

Fig. 3: t-SNE visualization of the quantized representations of CT and MRI
features z. and z,,: (A) Baseline VQ shows limited overlap, (B) VQ with EGAL
improves alignment, and (C) our complete method achieves optimal integration.

Quantized Feature Distribution Analysis: Fig. |3| demonstrates how our
dual-encoder architecture with VQ addresses vector mismatch. The baseline (A)
shows distinct CT and MRI clusters with minimal overlap. Our complete method
(C) achieves balanced feature distribution, creating a unified feature space while
preserving modality-specific information.

Discriminative Feature Distribution Analysis: Fig.[4]shows our approach
effectively separates and utilizes shared and modality-specific patterns. This
validates our second contribution of effectively disentangling shared and modality-
specific features, producing reliable uncertainty estimates and enable diverse
sample selection across modalities.

4 Conclusion

We presented a novel VQ-BEGAL framework that synergistically integrates vector
quantization and active learning to address key challenges in multi-modal medical
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Fig. 4: Discriminative feature distribution across modality conditions, showing
BEGAL’s ability to effectively disentangling shared and modality-specific features.

image segmentation. Through enhanced feature representation and integrated
discriminator-guided sample selection, our method improves training effectiveness
while reducing annotation requirements, demonstrating superior performance on
two public dataset.
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