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Abstract. Clinicians usually combine information from multiple sources
to achieve the most accurate diagnosis, and this has sparked increasing
interest in leveraging multimodal deep learning for diagnosis. However,
in real clinical scenarios, due to differences in incidence rates, multimodal
medical data commonly face the issue of class imbalance, which makes
it difficult to adequately learn the features of minority classes. Most ex-
isting methods tackle this issue with resampling or loss reweighting, but
they are prone to overfitting or underfitting and fail to capture cross-
modal interactions. Therefore, we propose a Curriculum Learning (CL)
framework for Imbalanced Multimodal Diagnosis (CLIMD). Specifically,
we first design multimodal curriculum measurer that combines two indi-
cators, intra-modal confidence and inter-modal complementarity, to en-
able the model to focus on key samples and gradually adapt to complex
category distributions. Additionally, a class distribution-guided training
scheduler is introduced, which enables the model to progressively adapt
to the imbalanced class distribution during training. Extensive exper-
iments on multiple multimodal medical datasets demonstrate that the
proposed method outperforms state-of-the-art approaches across vari-
ous metrics and excels in handling imbalanced multimodal medical data.
Furthermore, as a plug-and-play CL framework, CLIMD can be eas-
ily integrated into other models, offering a promising path for improv-
ing multimodal disease diagnosis accuracy. Code is publicly available at
https://github.com/KHan-UJS/CLIMD.

Keywords: Multimodal deep learning · Class imbalance · Curriculum
learning · Computer-aided diagnosis.

1 Introduction

Thanks to the rapid development of deep learning, Computer-Aided Diagnosis
(CAD) has experienced a new era of advancement. Traditional deep diagnosis
researches mostly focus on a single modality [6, 9, 12, 19], however, diagnosing
diseases based on only one modality is challenging and risky. Therefore, in recent
years, the application of multimodal deep learning (MMDL) in disease diagnosis,
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which makes comprehensive judgments by combining information from multiple
modalities, has garnered widespread attention [10,14,21].

In real medical cases, common diseases usually constitute a significant pro-
portion, while samples of some rare malignant diseases are relatively scarce,
leading to the issue of class imbalance. This issue makes it challenging for the
model to learn the minority classes, which can lead to biased predictions. There is
relatively limited research addressing the class imbalance issue in multimodal di-
agnosis (MD). Some existing methods attempt to apply common resampling [4],
which carries the risk of overfitting or underfitting, as well as loss reweight-
ing [13, 15, 23], which may increase the instability of model training. Addition-
ally, these methods overlook the impact of interactions between modalities in
MMDL.

To this end, we propose a MD framework based on curriculum learning
(CL) [1, 18] named CLIMD. CL enables the model to transition gradually from
simple to complex during the training process [3]. Inspired by the concept of CL,
we attempted to quantify the degree of class imbalance in the dataset and then
train the model using a progressive sampling strategy. Specifically, we first pro-
pose a curriculum measurer combining intra-modal confidence and inter-modal
complementarity, to evaluate the training difficulty of each multimodal sample.
Based on the difficulty, a class distribution-guided curriculum scheduling algo-
rithm is designed to quantify the degree of class imbalance and construct train-
ing subsets with gradually increasing class imbalance in each epoch, helping the
model adapt to imbalanced data. CLMD does not involve any down-sampling,
data generation, or data augmentation operations, thereby avoiding the issues of
underfitting or overfitting arise from them. The main contributions of this paper
can be summarized as follows:

– We propose a novel framework based on curriculum learning to mitigate
the issue of class imbalance in multimodal diagnosis. To the best of our
knowledge, this is the first CL strategy specifically designed for imbalanced
multimodal diagnosis.

– We design a curriculum measurer and a class distribution-guided training
scheduler to measure the training difficulty of multimodal samples and help
the model gradually adapt to the imbalance during training.

– Extensive experiments conducted on multiple datasets demonstrate that the
proposed method significantly outperforms state-of-the-art methods and can
effectively address the issue of class imbalance.

2 Method

In this section, we introduce the proposed method in detail, including a Multi-
modal Curriculum Measurer (MCM) and a Training Sample Scheduler (TSS).
The overview of CLIMD is shown in Fig. 1. It is noteworthy that, to evaluate
the upper bound of the proposed CL without interference from other factors, the
multimodal diagnosis (MD) network we employ (i.e., Baseline) is a basic and
classical early fusion architecture with Cross-Entropy (CE) as the loss function.
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Fig. 1. Overview of CLIMD, which includes Multimodal Curriculum Measurer (MCM)
and Training Sample Scheduler (TSS). (i) MCM evaluates the training difficulty of each
sample from intra-modal confidence ψ(m)

i and inter-modal complementarity ϕ(xi)(m),
which are combined to calculate the overall training difficulty r(xi) for each sample.
(ii) TSS samples from each class in order to construct the training subset Dt for the
t-th epoch and gradually increases the class imbalance degree in the training subset by
adjusting α(t).

In fact, CLIMD is plug-and-play and can be applied to other more complex MD
models.

2.1 Definition

Given a dataset D with M modalities, which includes N multimodal data ob-
servations with corresponding labels, i.e., D = {{x(m)

i }Mm=1, yi}Ni=1. The main
goal of the MD task is to learn a mapping from the multimodal data space
X = {x(m)

i ∈ Rdm}Mm=1 to the label space Y = {yi ∈ RC}, where dm and C are
the dimensionality of M modalities and class number, respectively.

2.2 Multimodal Curriculum Measurer

In imbalanced multimodal learning, random sampling may lead to model bias
toward majority classes or insufficient consideration of modality interactions. To
sample in a specific order, we propose the multimodal curriculum measurer as
a structured evaluation criterion to regulate the training process. The Multi-
modal Curriculum Measurer (MCM) comprises intra-modal confidence, which
prioritizes stable samples to enhance convergence robustness, and inter-modal
complementarity, which facilitates the learning of complementary information
across modalities to improve fusion effectiveness.

Intra-modal Confidence The prediction confidence of a sample in its m-th
modality quantifies the model’s certainty regarding the true class. To compute



4 Kai Han et al.

this, the class probability output pmi,c and the true class label yi,c are utilized to
derive the confidence score ψ(xmi ), as defined in Eq. 1.

ψ(xmi ) = σ

[
1

C

C∑
c=1

yi,c log p
m
i,c

]
(1)

where σ denotes the sigmoid function.

Inter-modal Complementarity Inter-modal complementarity quantifies the
complementarity score by computing modality feature similarity. Specifically, we
extract modality-specific representations F (xm) through encoders, then compute
pairwise modality feature similarity smm′ to obtain the similarity matrix S.
smm′ ∈ S, where m ∈ {1, · · · ,M}, m′ ∈ {1, · · · ,M}. The calculation process of
feature similarity smm′ is as follows:

smm′ =
F (xm) · F (xm′

)

∥F (xm)∥∥F (xm′)∥
(2)

Based on the similarity matrix S, modality complementarity is computed as
shown in the following equation.

ϕ(xi) = 1− 1

M(M − 1)

∑
m ̸=m′

smm′ (3)

Finally, the intra-modal confidence and inter-modal complementarity scores
are integrated, as shown in Eq. 4.

r(xi) = ϕ(xi) +
1

M

M∑
m=1

ψ(xmi ) (4)

2.3 Class Distribution-guided Training Scheduler

To help the model gradually adapt to imbalance, we propose a Training Sample
Scheduler (TSS) guided by class distribution. TSS first quantifies the degree of
class imbalance in the dataset. Then, the model starts learning from a subset
with relatively balanced distribution, and progressively increases the degree of
class imbalance until all imbalanced data is involved in the training process.

Fit the Class Distribution We assume that there are C classes in the dataset
D, i.e., D = {D(c)

sub}Cc=1. A discrete class distribution N = {n(c)}Cc=1 can be
obtained, where n(c) represents the number of samples in the c-th class. Next, we
fit N to an improved power-law distribution, whose general probability density
function (PDF) is as follows:

P (N) = (γα− 1)nγα−1
min N−γα (5)



Title Suppressed Due to Excessive Length 5

Fig. 2. An example of class distribution over epochs, where the sample number N =
1000, the total epochs T = 10, the number of classes C = 10, the hyperparameter of
the real class distribution (in Epoch 10) function α(T ) = 5.

where nmin represents the smallest value in N , γ > 0 is a hyperparameter that
makes the distribution function smoother, and α > 1/γ is the parameter to be
estimated. The optimal solution for α is obtained through Maximum Likelihood
Estimation (MLE) as:

α̂ =
1

γ

(
1 +

C∑C
c=1 lnn

(c) − C lnnmin

)
(6)

Notably, α̂ here can be regarded as the upper bound of the class imbalance
degree, and it is written as α(T ) in the following content.

Construct the Training Subsets According to training difficulty r(xi) ob-
tained in Section 2.2, all samples within their respective classes are sorted from
easy to hard, waiting to be sampled in order later. We assume that the to-
tal number of training epochs is T , and the training subset for the t-th epoch
is Dt, where t ∈ [0, T ]. The number of samples in each training subset is

St =
{
s
(c)
t

}C

c=1
= t

T ·N , where s(c)t represents the number of samples in the c-th
class. In the first training subset D1, the classes follow a uniform distribution,
meaning that the number of samples for each class is S1/C. Next, we control the
degree of class imbalance in each epoch by adjusting α(t) = 1+(α(T )− 1) · t−1

T−1 ,
and 1 ≤ α(t) ≤ α(T ). Therefore, the class distribution function of the train-
ing subset in the t-th epoch is a mixture of uniform distribution and power-law
distribution, as follows:

qt(c) =

(
1− t− 1

T − 1

)
· 1

C
+

(
t− 1

T − 1

)
· c−γα(t)∑C

i=1 i
−γα(t)

(7)

where qt(c) represents the sampling probability of c-th class in the t-th epoch,
and the number of samples drawn from the c-th class in order is s(c)t = qt(c) ·St.
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To provide an intuitive illustration, we have included an example in Fig. 2,
where N = 1000, T = 10, C = 10, α(T ) = 5. It shows that the proposed schedul-
ing strategy allows the training subsets to gradually transition from a uniform
distribution to a long-tail distribution (which approximates real imbalanced class
distribution), enabling the model to progressively adapt to the class imbalance
in the training samples.

2.4 Experiment

Datasets and Evaluation Metrics Multimodal Liver Lesion Classification
(MLLC) is a private multimodal liver lesion diagnosis dataset containing 320
patients, involving three classes: normal, metastatic liver lesions, and hepatocel-
lular carcinoma. It consists of CT arterial phase images, medical history texts,
and laboratory test indicators. Breast Invasive Carcinoma (BRCA) is a publicly
available dataset in The Cancer Genome Atlas (TGCA) 1 program. It is used for
breast invasive carcinoma subtype classification, containing 3 modalities: mRNA,
DNA methylation, and miRNA.

Three metrics are used to quantify the experimental results: accuracy (ACC),
weighted F1 score, and macro F1 score.

Implementation Details For the MLLC dataset, a pretrained ResNet18 [8] is
used to extract features from CT. In addition, we use MedBERT [20] to encode
medical texts and a two-layer fully connected network (FCN) to encode the
tabular data. For the BRCA dataset, we preprocess it referring to [22] 2. The
learning rate is set to 5e-5, the training epochs T is 100, the hyperparameter
γ is empirically set to 0.3. All training processes are performed on an NVIDIA
GeForce RTX A6000 GPU.

Table 1. The comparisons with SOTA MD methods on MLLC and BRCA.

Method MLLC BRCA
ACC Weighted F1 Macro F1 ACC Weighted F1 Macro F1

MORONET [22] (NC’ 2021) 72.2 ± 4.6 67.2 ± 4.9 68.3 ± 6.8 82.9 ± 1.8 82.5 ± 1.6 77.4 ± 1.7
Multi-D [7] (CVPR’ 2022) 74.4 ± 5.0 68.1 ± 4.6 70.3 ± 4.2 87.7 ± 0.3 88.0 ± 0.5 84.5 ± 0.5
MLCLNet [25] (AAAI’ 2023) 76.4 ± 3.5 74.5 ± 3.2 72.6 ± 3.7 86.4 ± 1.6 87.8 ± 1.7 82.6 ± 1.8
DPNET [27] (ACM MM’ 2023) 76.7 ± 4.3 72.7 ± 3.7 73.8 ± 4.0 87.8 ± 1.0 88.4 ± 1.2 85.2 ± 1.2
DMIB [5] (WACV’ 2024) 77.6 ± 3.6 71.3 ± 4.3 74.9 ± 3.2 86.0 ± 0.7 86.0 ± 0.9 81.6 ± 0.9
PCAG [24] (NN’ 2024) 78.1 ± 3.1 73.0 ± 3.1 75.6 ± 3.1 85.2 ± 1.7 85.5 ± 1.9 81.4 ± 2.6
GCFANet [26] (IF’ 2024) 76.5 ± 3.9 73.5 ± 2.4 77.8 ± 2.7 88.6 ± 1.5 88.9 ± 1.6 85.3 ± 1.6
CLIMD 78.5 ± 2.3 75.4 ± 2.5 78.5 ± 2.3 89.2 ± 1.4 89.4 ± 1.2 86.5 ± 1.8

1 https://www.cancer.gov/ccg/research/genome-sequencing/tcga
2 Code is available at https://github.com/txWang/MOGONET

https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://github.com/txWang/MOGONET
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Comparing with SOTA Methods We compare CLIMD with state-of-the-
art MD methods [5, 7, 22, 25–27], and the results are shown in Table 1. CLIMD
achieves the best performance on both datasets, demonstrating the effectiveness
of the proposed curriculum metric in evaluating the degree of imbalance among
training samples.

Table 2. The comparisons with other methods specifically designed for class imbalance
on MLLC and BRCA.

Method MLLC BRCA
ACC Weighted F1 Macro F1 ACC Weighted F1 Macro F1

Random Undersampling 73.2 ± 5.1 69.3 ± 5.2 71.6 ± 6.3 83.6 ± 1.4 84.2 ± 0.8 81.1 ± 1.5
Oversampling (SMOTE [2]) 70.2 ± 6.8 70.3 ± 5.0 68.8 ± 7.4 79.7 ± 1.3 80.4 ± 1.0 76.6 ± 1.6
Oversampling (VAE) 74.4 ± 4.7 72.3 ± 4.3 71.6 ± 5.6 82.4 ± 1.6 83.4 ± 2.1 79.2 ± 1.8
WCE Loss 75.5 ± 4.7 74.0 ± 3.1 72.5 ± 4.3 84.8 ± 2.2 85.0 ± 2.2 81.7 ± 2.5
Focal Loss [11] 75.8 ± 2.8 74.7 ± 3.7 75.8 ± 3.8 85.1 ± 1.2 85.6 ± 0.8 82.6 ± 1.1
CLIMD 78.5 ± 2.3 75.4 ± 2.5 78.5 ± 2.3 89.2 ± 1.4 89.4 ± 1.2 86.5 ± 1.8

Evaluation of Addressing Class Imbalance To evaluate the performance
of CLIMD in addressing the issue of class imbalance, we compare it with other
methods specifically designed for class imbalance, and the results are presented
in Table 2. The explanation for each method is as follows: (1) Random Under-
sampling: Reducing the number of majority classes by random downsampling;
(2) Oversampling (SMOTE): Using SMOTE [2] algorithm to oversample the
minority classes; (3) Oversampling (VAE): Generating new samples by VAE
to oversample the minority classes; (4) Weighted Cross-Entropy (WCE)
Loss: Assigning different weights to different class samples using the WCE loss;
(5) Focal Loss: Dynamically adjusting the contribution of each sample to the
loss using focal loss [11]. The results demonstrate that CLIMD is more efficient
in addressing the issue of class imbalance.

Improvements to Different Models Our proposed CL framework is plug-
and-play, which implies its potential applicability to various other MD models
to further improve their performance. To substantiate this claim, we conducted
experiments based on several state-of-the-art models [5, 7], and the results are
shown in Table 3. It can be seen that after applying CLIMD, the performance of
various MD models has improved to varying degrees. Moreover, the improvement
is more pronounced for simpler models.

Ablation Study A series of ablation studies are conducted to validate the
effectiveness of the proposed MCM and TSS, the results are shown in Table 4.
Methods (1) and (2) only use intra-modal or inter-modal measure, respectively.
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Table 3. The improvement of applying CLIMD on BRCA dataset.

Method ACC Weighted F1 Macro F1

Baseline 83.6 ± 1.6 84.4 ± 1.5 81.3 ± 2.1
Baseline (w/ CLIMD) 89.2 ± 1.4 89.4 ± 1.2 86.5 ± 1.8

Multi-D 87.7 ± 0.3 88.0 ± 0.5 84.5 ± 0.5
Multi-D (w/ CLIMD) 89.6 ± 0.6 90.2 ± 1.0 85.4 ± 0.8

DMIB 86.0 ± 0.7 86.0 ± 0.8 81.6 ± 0.9
DMIB (w/ CLIMD) 88.4 ± 0.6 88.9 ± 1.1 83.8 ± 1.4

Table 4. The ablation study of MCM and TSS on BRCA.

Method Curriculum Measurer Training Scheduler ACC Weighted F1 Macro F1Intra-modal Inter-modal
Baseline - - - 83.6 ± 1.6 84.4 ± 1.5 81.3 ± 2.1

(1) ✓ - ours 86.6 ± 1.1 86.9 ± 0.7 83.4 ± 1.4
(2) - ✓ ours 87.5 ± 1.2 88.0 ± 0.9 84.3 ± 1.5
(3) ✓ ✓ Baby Step 85.1 ± 2.4 86.1 ± 2.1 80.2 ± 2.7
(4) ✓ ✓ One-Pass 84.9 ± 1.6 85.6 ± 1.2 79.2 ± 1.9
(5) ✓ ✓ Linear 86.6 ± 2.1 87.3 ± 1.6 84.0 ± 2.4
(6) ✓ ✓ Root 88.3 ± 1.6 88.8 ± 1.1 85.4 ± 1.6
(7) ✓ ✓ Geom 87.7 ± 1.9 88.3 ± 1.5 84.8 ± 2.2

CLIMD ✓ ✓ ours 89.2 ± 1.4 89.4 ± 1.2 86.5 ± 1.8

Methods (3)-(7) employ Baby Step [1], One-Pass [1], Linear, Root [17], and
Geometric Progression [16] as training schedulers, respectively. The ablation
experiments reveal that the optimal results are achieved when both the proposed
curriculum measures and training scheduler are utilized.

3 Conclusion

In this paper, a novel CL framework is proposed to address the issue of class
imbalance in multimodal diagnosis. We first leverage intra-modal confidence and
inter-modal complementarity to measure training difficulty of each multimodal
sample. Then, we design a novel scheduler based on class distribution, which
aims to lead the model to gradually adapt to the imbalanced class distribution.
Extensive experimental results on multiple datasets demonstrate the efficiency
of the proposed method. In future work, we will evaluate the proposed method
across diverse medical scenarios using additional datasets.
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