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Abstract. Image-based biomarkers provide non-invasive regional as-
sessment of structural-functional abnormalities in Chronic Obstructive
Pulmonary Disease (COPD). For example, quantitative computed to-
mography (QCT) identifies emphysema and small airway disease, while
functional MRI measures lung ventilation and perfusion. In recent years,
machine learning techniques have been introduced to predict quantitative
indices from alternative imaging modalities, with the aim to reduce scan-
ning time, radiation dose and/or costs in the clinical setting. However,
most of those works focused on lung ventilation, while robust quantifica-
tion of regional lung perfusion of dynamic contrast-enhanced (DCE) MRI
remains a challenging task. In addition, previous studies focused only on
learning from a single imaging modality. In this study, we explore a
deep learning-based model to predict conventionally CT-based biomark-
ers, namely Parametric response mapping (PRM) classifications, from
multi-sequence structural-functional MR images. Our proposed model
achieves very strong correlations in predicting %PRMemphysema (Pear-
son correlation coefficient r = 0.91, p < 0.001 at patient level and
r = 0.87, p < 0.001 at lung lobe level), and moderate to strong corre-
lations in predicting %PRMnormal (r = 0.60, p < 0.001 at patient level
and r = 0.58, p < 0.001 at lung lobe level) in unseen COPD patients.
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1 Introduction

Imaging techniques are of increasing importance in the assessment of COPD, es-
pecially for regional pulmonary abnormalities. The Parametric response mapping
(PRM) method introduced by Galbán et al. [5] spatially aligns the expiratory
to the inspiratory CT scans by a deformable volumetric registration process.
Thereafter, the classification of lung voxels can be carried out by using the expi-
ratory and inspiratory attenuation value for every voxel. This allows classifying
lung voxels as normal parenchyma (PRMnormal), functional small-airway dis-
ease (PRMfSAD), and emphysema (PRMemphysema). As an emerging technique
in pulmonary imaging, MRI provides a radiation-free alternative and numerous
possibilities in functional imaging, such as ventilation and perfusion within the
lungs.

Attempts have been made to combine imaging-based indices from different
modalities. MacNeil et al. [11] proposed a comprehensive biomarker that com-
bines CT with hyperpolarized helium MRI. The emergence of deep learning
facilitates the prediction of lung function parameters across different imaging
modalities. For example, ventilation maps were synthesized from free-breathing
proton MRI. [4], or from paired inspiratory-expiratory non-contrast CT [1].

In the meantime, such learning-based methods remain underexplored toward
functional perfusion MRI. Quantitative perfusion indices such as pulmonary
blood flow (PBF) and pulmonary blood volume (PBV) can be drawn from dy-
namic contrast-enhanced MRI (DCE-MRI). However, such indices suffer from
inherent problems such as low signal-to-noise ratio, nonlinearity of the contrast
agent, and motion artifacts.

To address those problems, Schiwek et al. [13] proposed a threshold-based
algorithm too discern well-perfused and perfusion-defect regions, which showed
moderate to strong correlations to %PRM indices and lung function tests. Fur-
ther studies [14] suggest that certain T1 signals are related to lung perfusion.

Moreover, most of the published studies focus on utilizing source images
from a single modality or a single MR sequence. We believe a more comprehen-
sive model that takes versatile structural-functional images as input can learn
additive features from different measurements, alleviate the limitations of the
low Signal-to-Noise Ratio (SNR) and low spatial resolution in individual mea-
surements, thus producing better results. Such a model may be employed for
more challenging tasks as to predict conventionally CT-based biomarkers from
MRI. Inspired by multi-sequence MRI synthesis [6], we proposed a model that
leverages complementary information from multi-sequence structural-functional
MRI to predict voxel-wise PRM classifications. The model can be alternatively
applied in the scenario of missing sequences.
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Fig. 1. Overview of the proposed framework. The upper part is an nnUnet trained
to segment lung lobes on VIBE MRI. The lower part composes an encoder-decoder-
based image translation model which predicts CT-driven PRM maps from structural
and quantitative functional MRI. The two models were trained separately but with the
same data split to keep the test set unseen. In the test phase, lung segmentation and
lobe segmentation from the trained nnUnet were used as lung mask and forwarded to
the PRM prediction model, to determin predicted %PRMemphysema, %PRMfSAD, and
%PRMnormal both on the patient-level and lobe-level.

2 Materials and Methods

2.1 Data Set

104 patients with COPD (age 56.9±18.6, mean GOLD 2.10±1.19) were enrolled
at three different imaging centers as a subset of the COSYCONET multi-center
trial [8]. All patients underwent same-day paired inspiratory CT and structural-
functional MR scans, including a 4D dynamic contrast enhanced (DCE) MRI.

MRI examinations were performed using identical models of 1.5 T MR scan-
ner (Magnetom Aera, Siemens Healthineers) and a standardized chest protocol.
For DCE-MRI, a time-resolved angiography with interleaved stochastic trajec-
tories (TWIST) sequence with gadolinium-based contrast agent followed by a
saline chaser was acquired, with a slice thickness of 5.0 mm, and a coronal-plane
resolution between 1.57 × 1.57 mm to 2.34 × 2.34 mm. Time-resolved residue
function maps (R(t)-map) were computed, and maximum contrast enhancement
(IRmax) map and PBF map were quantified accordingly with established meth-
ods [12]. Furthermore, this study included T1-weighted 3D-GRE structural Vol-
umetric Interpolated Breath-hold Examination (VIBE) measurements obtained
both before and after DCE-MRI (post VIBE), with a slice thickness of 4.0 mm,
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and a coronal-plane resolution between 0.98× 0.98 mm to 1.46× 1.46 mm. MR
images used in the study were all acquired at inspiratory breath hold.

Non-contrast low-dose CTs (from three different Siemens Somatom scanners)
with paired scans in inspiratory and expiratory breath-hold were acquired. Im-
ages were reconstructed with a soft kernel, with a slice thickness of 1.0 mm,
and a in-plane resolution between 0.49× 0.49 mm to 0.94× 0.94 mm. Lung seg-
mentations, lung lobe segmentations, and voxel-wise PRM classifications were
generated with an automated in-house software [3, 15, 10, 9]. We further define
PRMabnormal = PRM emphysema ∪ PRM fSAD.

All images were co-registered to the spatial layout of VIBE MRI. TWIST
MRI (used to compute PBF and IRFmax) and post-contrast VIBE images were
registered to morphological VIBE MRI using affine and deformable registration,
with aim of correcting minor positioning or breathing state shifts. CT images,
as acquired at higher resolution and potentially different field-of-view, were first
resampled to match the spacing of VIBE MRI, and subsequently aligned us-
ing ANTspy SyN framework [2] which consists of rigid, affine and deformable
registration. The computed spatial transformation was hence applied to lobe
segmentation and PRM maps as well. A registered CT lung mask was applied
before images were normalized to [-1,1].

We randomly split samples into 60 for training, 14 for validation and 30 for
testing. All images were cropped or padded to the size of 60× 256× 256 before
being forwarded to the each of the following models.

2.2 The Learning Framework

The proposed learning framework is composed of two parts: A lung lobe seg-
mentation model to identify six lung lobes on non-contrast VIBE MRI, and a
PRM prediction model to classify each lung voxel from multi-sequence structural
functional MRI. An overall architecture is presented in Fig. 1.

Lung Lobe Segmentation Model For training the model, lung lobes were
segmented from inspiratory CT using the CT analysis software ***** [10]. Lung
halves were identified and each were further segmented in to upper, middle, and
lower lobes, resulting in six lung lobes for each image, except for two cases where
the lingula (left middle lobe) could not be identified. Results were then spatially
registered to VIBE MRI as ground truth. We employed an nnUnet [7] to identify
lung lobes in the non-contrast VIBE MRI. The model was self-configured and
trained for 1000 epochs.

Multi-sequence PRM Prediction Model For prediction of a voxel-wise
PRM classification, we adapted the multi-sequence MR synthesis model [6],
which consists of an image encoder, a feature attention layer and an image
decoder. Modifications were made as larger convolution kernels of 5× 5× 5 were
used for all ConvBlocks. Channels numbers were set as 8, 16, and 32 for the
encoding path, and 32, 8, 3 for the decoding path. Co-registered 3D MR images
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and quantitative maps were forwarded. The model was trained for 200 epochs
with a learning rate of 1 × 10−4 and a batch size of 8. Early stopping was em-
ployed and the model with best validation performance data was retained for
the evaluation on test set.

To minimize the influence of the partial volume effect tangled with poten-
tial bias introduced by image registration, we implemented a loss function that
comprises three parts: a cross-entropy loss of the voxel-wise PRM classification
(LCE), a fuzzy classification loss (Lfuzzy) where the labels were first blurred with
a gaussian filter with a size of 3× 9× 9, and a total lung PRM percentage loss
(LPRM). In our experimental setting, the loss weights λ1, λ2, and λ3 were set as
0.3, 0.3, and 0.4 respectively.

L = λ1LCE + λ2Lfuzzy + λ3LPRM

where
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3 Results

The proposed lobe segmentation model was evaluated against the CT lobe seg-
mentation registered to VIBE MRI, achieving a DICE score of 0.97 ± 0.01 for
the total lung segmentation, and 0.850± 0.06 for the lobe segmentation.

The lung masks generated were subsequently applied to the test set and
forwared to the trained PRM prediction model. Fig. 2) shows representative
slices of the predicted PRM classifications in 3 subjects at different COPD GOLD
stages. The proposed model achieves an overall DICE score of 0.69 ± 0.18 for
identifying PRMabnormal, and of 0.45±0.22 for identifying PRMemphysema among
the 30 patients.

Results of the two models were further integrated to compute patient-level
and lobe-level predicted %PRMemphysema, %PRMfSAD, and %PRMnormal. For
comparison, we computed the measured CT-driven PRM directly from the orig-
inal scan to avoid possible biases induced by image registration.

We calculated the Pearson correlation coefficient for the comparison of pre-
dicted and measured %PRM. The results in Fig. 3 show that our model achieves
a very strong correlation in predicting %PRMemphysema (r = 0.91, p < 0.001
at patient level and r = 0.87, p < 0.001 at lobe level), a weak correla-
tion in predicting %PRMfSAD (r = 0.15, p = 0.42 at patient level and r =
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VIBE post VIBE IRmax PBF PRMGTPRMpredicted

Fig. 2. Representative results from the unseen test set. Row 1-3 from a subject with
GOLD 1 (DICEemph=0.36, DICEabnormal=0.796). Row 4-6 from a subject with GOLD3
(DICEemph=0.70, DICEabnormal=0.799, in this case post VIBE sequence could not be
reconstructed, the model was tested on the other 3 input images). ROW 7-9 from
a subject with GOLD 4 (DICEemph=0.62, DICEabnormal=0.842). VIBE, IRMax and
PBF images are shown in relative intensity, PRM mpas were color coded as such: red
represents PRMemphysema, yellow represents PRMfSAD, and gree represents PRMnormal.
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0.32, p < 0.001 at lobe level) and a moderate to strong correlation in predict-
ing %PRMnormal (r = 0.60, p < 0.001 at patient level and r = 0.58, p <
0.001 at lobe level). The mean differences are −1.8%± 9.0% for PRMemphysema,
−4.6%± 21.0% for PRMfSAD, and −0.1%± 20.8% for PRMnormal, respectively.

We further assessed the model’s performance in the scenario with missing in-
put sequences. DICEemph, DICEabnormal, and the correlation coefficient against
the measured %PRM were computed on the prediction when different configu-
rations of input images were forwarded to the trained model.

As the results shown in Table 1, the highest overall performance is obtained
when the complete set of four source images are provided. Notably, with the
exclusion of the post VIBE measurement alone, the model still yields compa-
rable results, while removing VIBE measurement induces minor performance
degradation. In contrast, omitting functional images, IRmax or PBF, leads to
pronounced impairment of the model capacity, which highlights the contribution
of functional maps in the PRM prediction task.

Fig. 3. Comparison between predicted %PRMemphysema, %PRMfSAD, and %PRMnormal

against the measured values on CT. left: scatter plot with Pearson’s correlation coeffi-
cient at patient level, middle: scatter plot with Pearson’s correlation coefficient at lobe
level, right: corresponding Bland-Altman plot, the red lines represent mean difference,
and the dashed lines represent the values corresponding to ±1.95σ.
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Table 1. Model performance with different input image perturbations, in comparison
with established qMR. ∗represents p < 0.05.

Model with Input Images DICEemph DICEabnormal r%emph r%fSAD r%normal

All 4 0.45± 0.22 0.69± 0.18 0.91∗ 0.14 0.60∗

VIBE, IRmax, PBF 0.43± 0.22 0.70± 0.15 0.88∗ 0.23 0.62∗

post VIBE, IRmax, PBF 0.44± 0.20 0.72± 0.15 0.86∗ 0.13 0.46∗

VIBE, post VIBE, IRmax 0.21± 0.20 0.50± 0.15 0.41∗ 0.28 0.13
VIBE, post VIBE, PBF 0.11± 0.07 0.33± 0.14 -0.16 0.13 -0.15
VIBE, IRmax 0.34± 0.20 0.49± 0.24 0.89∗ 0.33∗ 0.70∗

IRFmax, PBF 0.44± 0.20 0.72± 0.15 0.85∗ −0.14 0.44∗

qMR
QDP (derived from IRmax)[13] − − 0.61∗ −0.18∗ −0.6∗

mean PBF − − −0.08 −0.20 0.22

4 Discussion

We proposed a deep learning-based framework that predicts CT-based regional
abnormalities from multi-sequence structural functional MRI. The framework
was evaluated on 104 patients at different stage of COPD, and results were
compared both at patient level and lung lobe level, as well as the regional overlap.

The proposed model effectively identifies emphysema, achieving very strong
correlation and small mean difference against the ground truth obtained from
high resolution CT images. The multi-sequence data can compensate the low
SNR and low spatial resolution of a single modality, and may provide a radiation-
free alternative to determine emphysema in COPD patients.

In the meantime, defining small airway obstruction regions remains challeng-
ing, as only a weak correlation was achieved. The results align with the fact that
%PRMfSAD are identified from CT scans acquired at inspiration and expiration,
while in this study we only utilized MR sequences at inspiratory status. Other
studies [4, 1] suggest, that the additional inclusion of a scan at expiration can
provide supplementary ventilation information, which may further improve the
prediction of %PRMfSAD.

In addition, we evaluated the proposed model across varied input image
combinations, thereby highlighting the critical contribution of the individual
measurements, especially IRmax and PBF. In future work, we will incorporate
additional sequences and assess their ability to contribute complementary infor-
mation.

We acknowledge the following limitations of this study. The model was only
validated on a relatively small dataset, since multi-sequence MRI data of COPD
patients are not commonly available. Conversely, the flexible framework allows us
to train the model on versatile input images, and the employment of quantitative
images as input should enhance the generalization of the proposed model. We
plan to test the model on a larger data set in future studies.
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