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Abstract. Acquisition of dynamic contrast-enhanced MR imaging with
gadolinium-based contrast agents at multiple time points provides valu-
able diagnostic information. In breast MRI, dynamics of enhancement
serve as key indicators for differentiating malignant from benign tu-
mors. However, acquiring delayed-phase images requires extended scan
times and could lead to patient discomfort and increased costs. Fur-
thermore, some protocols acquire only early-phase images, limiting the
ability to capture dynamics of enhancement over time. In this study,
we propose an iterative deep neural network that sequentially generates
post-contrast images using prior outputs. By synthesizing delayed-phase
images at multiple time points from early acquisitions, the proposed net-
work enables the temporal prediction of enhancement. We evaluate our
approach using a breast MRI dataset consisting of images acquired at
six time points, including the pre-contrast phase. The results indicate
that the proposed method can approximate delayed-phase images from
early-phase images, suggesting its potential to support abbreviated scan
protocols in dynamic contrast-enhanced MRI. Our code is available at:
https://github.com/goglxych97 /iterU-Net.git

Keywords: Breast MRI - Contrast-Enhanced - Image Synthesis - Iter-
ative Deep Network

1 Introduction

Dynamic contrast-enhanced (DCE) MRI with gadolinium-based contrast agents
acquired at multiple time points provides insight into the temporal dynamics of
tissue enhancement, reflecting physiological information [8]. However, prolonged
scan times for delayed-phase imaging result in patient discomfort and increased
examination costs. Furthermore, some protocols such as the abbreviated protocol
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Fig. 1. Representative kinetic curve types in DCE-MRI, illustrating signal intensity
changes over time. The three primary enhancement patterns are shown: Type I (per-
sistent), Type 11 (plateau), and Type III (washout).

include only early-phase imaging. These limitations could restrict the evaluation
of enhancement patterns.

In breast imaging, DCE-MRI is particularly valuable for distinguishing ma-
lignant from benign lesions. The temporal variation in enhancement contains
critical information on tumor vascularity and tissue characteristics [5,12,19].
These enhancement-based signal intensity patterns allow tumors to be catego-
rized into three primary kinetic curve types: persistent, plateau, and washout.
The three kinetic curve types are illustrated in Figure 1. Each curve type is
characterized as follows: the persistent curve gradually increases, the plateau
curve rises and stabilizes, and the washout curve rises and then declines. These
dynamics of enhancement are helpful for lesion characterization and diagnos-
tic decisions. Malignant lesions are more frequently associated with washout or
plateau curves, whereas benign lesions often exhibit a persistent pattern[12,19].

Recently, deep learning models have been applied to synthesize breast MR
imaging [2], due to their capability of generating high-quality images and cap-
turing complex patterns from data. Previous studies [6,13] have demonstrated
the ability of deep learning models in contrast-enhanced breast MRI, particu-
larly in synthesizing delayed-phase images. However, conventional approaches
are limited to synthesizing images at a single time point.

In this study, we propose iterU-Net, an iterative deep neural network that
generates post-contrast images at delayed time points from a pre-contrast and
early-phase image. At each iterative step, the network progressively predicts the
contrast-enhanced image for the next time point using prior outputs. This ap-
proach enables synthesizing time-series contrast-enhanced images and predicting
delayed enhancement patterns without requiring extended scans.
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2 Related Work

2.1 TIterative Deep Networks in Medical Imaging

Several studies have explored the use of iterative deep networks in medical imag-
ing. In MRI reconstruction, these models improve image quality through pro-
gressive steps [10, 16,22]. In medical image segmentation and object detection,
they refine predictions by leveraging prior outputs and iteratively correcting er-
rors [14, 15]. While these studies have focused on iterative refinement, a recent
study introduced an iterative approach that sequentially synthesizes low-dose
contrast-enhanced images from high-dose contrast-enhanced images [25]. This
study highlights that an iterative and progressive network could incorporate in-
formation at different levels, thereby enabling the flexible generation of outputs
at various stages.

2.2 Synthesizing Contrast-Enhanced Imaging

Studies on synthesizing delayed-phase image from early-phase acquisition in
DCE-MRI have explored approaches [1,6,9] such as GANs [7] and physics-
informed models. Some models incorporate multiple time points to improve the
generation of delayed-phase images [13]. Recently, studies have applied deep
learning models to predict delayed-phase images and kinetic curves in breast
MRI, demonstrating the feasibility of kinetic curve estimation [6]. However, ex-
isting approaches have been limited to predicting a single time point, restricting
their ability to capture the temporal progression of enhancement. Our proposed
method effectively models the sequential dynamics of enhancement using an it-
erative deep-learning framework.

3 Method

3.1 Image Normalization

Normalizing input images is recommended for stable model training, and using
dataset-appropriate normalization helps the network learn meaningful represen-
tations more effectively. Because DCE-MRI has different imaging distributions
over time, it requires consistent normalization across all time frames. In this
study, we adopted the Time-Intensity pattern-based normalization (TI-norm),
which has been shown to be effective for dynamic images [6]. The normalized
image y, at each time point image xj, is defined as follows:

Ye = (T — f1p)/0p (1)

Here, j1,, and o, denote the mean and standard deviation at a specific time point.
In this study, we used the first acquired image after contrast administration as
the reference time point.
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3.2 ROIs and Lesion Segmentation

For model training, regions of interest (ROIs) were defined using a previously
developed segmentation model [18]. This model, trained on pre-contrast images,
was used to predict fibroglandular tissue and background parenchymal enhance-
ment, both of which were included in the breast ROIs.

Since the cancerous region had a relatively limited spatial extent within the
breast ROIs, there was a potential risk of bias during model training. To address
this issue, an additional segmentation method trained on both pre-contrast and
post-contrast enhanced images was performed [20]. The resulting segmented re-
gions were used for foreground-aware random cropping, as described in a later
section.

3.3 Proposed Method

Unlike previous models that synthesize contrast-enhanced images at a single time
point, our approach iteratively predicts sequential time-series images, effectively
capturing the dynamics of enhancement. The iterU-Net, a 3D U-Net [4] based
network with an iterative architecture, is designed to predict contrast-enhanced
images in DCE-MRI. The proposed network has two main contributions. First,
the network iteratively generates sequential outputs and, at each iteration step,
uses time embeddings and a ConvLSTM [23] block to effectively integrate tempo-
ral dependencies. Second, a warm-up stage was employed to configure the initial
model parameters, facilitating model convergence. The overall training process
is shown in Figure 2.

Architecture of iterU-Net Figure 2(b) illustrates the architecture of the
proposed iterative network: iterU-Net. Based on a U-Net [21] design, this network
takes a pre-contrast image and a contrast-enhanced image at time step k as
inputs, and generates the contrast-enhanced image for time step k + 1.

To incorporate temporal information into the model, sinusoidal encoding [24]
was applied, followed by projection layers that embed time information into all
blocks of the U-Net based architecture. The projection layers consist of two linear
layers with a GELU [11] activation in between. Additionally, a ConvLSTM block
was employed to integrate information from previous iterations. As the network
iterates, it updates its hidden state and cell state at each step, which are then
used in subsequent iterations to maintain dynamic information. The ConvLSTM
block was applied prior to the downsampling block.

Since structural details are preserved between time points in contrast-enhanced
images, a residual connection was added at the output-level. This enables an iter-
ative process where the output from the previous time point is refined to generate
the next, ensuring that the network focuses on temporal changes.

Foreground-Aware Random Cropping To address the imbalanced distri-
bution of lesion areas during 3D patch-based training, we applied a foreground-
aware random cropping strategy that selectively extracts regions containing both
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Fig. 2. Overview of the training process and model architecture. (a) The process of
extracting ROIs and cancerous regions using pre-contrast and post-contrast images
was presented. (b) Architecture of the proposed iterative network: The network gener-
ates the contrast-enhanced image for the next time point based on the prior contrast-
enhanced image and pre-contrast image. (c¢) Two-stage training of the proposed net-
work: c-1. Warm-up stage, where actual images are used to achieve initial convergence,
and c-2. Optimization stage, where the model’s output is recursively used as input.
(d) Application of the iterative network for inference: The model takes a pre-contrast
image and one dynamic contrast-enhanced image as inputs, and iteratively predicts

sequential outputs.
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the foreground (lesion) and the background. One patch was randomly sampled
from the segmented cancerous region, and another from the entire image to form
a paired input. This approach helped alleviate bias caused by data imbalance
and ensured that the model captured critical lesion details.

Warm-up Training for Pretraining To prevent unstable outputs from being
recursively fed into the network during training, we divided the training process
into two stages, as illustrated in Figure 2(c): warm-up stage and optimization
stage. During the warm-up stage, actual images were used as inputs to achieve
initial convergence in the iterative network. Then, in the optimization stage,
leveraging the parameters pretrained during the warm-up stage, the prior output
was used as input for each iteration.

Loss Calculation In training, we used a combination of loss functions to ensure
both structural fidelity and contrast preservation. L1 loss was used for pixel-
wise accuracy, SSIM loss preserved structural similarity, perceptual loss (Med3D,
Chen et al. [3]) captured high-level contextual features, and gradient difference
loss [17] emphasized fine contrast variations. Loss weights were empirically set
to 0.1, 1, 1, and 0.1, respectively.

4 Result

4.1 Dataset

The Breast DCE-MRI dataset was acquired at our institution and consists of
images taken at six time points: before and at 85, 155, 225, 295, and 365 seconds
after the injection of the contrast agent gadolinium DTPA (0.1 mmol/kg). Scans
were performed with patients in the prone position using a 3-T Ingenia scanner
(Philips, Best, The Netherlands). T1-weighted axial images were obtained with
THRIVE sequences (TR/TE = 4.0/1.8 ms, flip angle 12°, slice thickness 1 mm).
From an initial cohort of 200 subjects, two cases were excluded due to inconsis-
tent image dimensions, resulting in a final dataset of 198 individuals with 160
(42 type I, 85 type II, 33 type III) for model training and 38 (16 type I, 14 type
I1, 8 type III), for testing.

4.2 Evaluation of Proposed Method

The proposed network was compared with 3D U-Net baseline models (one for
each time point) that were trained to predict a single time point contrast-
enhanced image. All models were trained under the same conditions. We evalu-
ated overall image quality using PSNR and SSIM, and quantified the enhance-
ment error in the segmented cancerous region by measuring squared error in
mean intensity between the actual and synthesized images. The results for each
time point are presented in Table 1.
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Table 1. Results between baseline model and proposed iterative network

Time Point  [PSNR()  SSIM(1) Engi‘fgf(rf)ent
2DYN (155 s)[41.0328 0.9800 0.1176
Basline Model 3DYN (225 s) |40.5878 0.9795 0.1200
(Single Time point) [4DYN (295 s)|39.5314 0.9795 0.2397
5DYN (365 s)|39.1023 0.9792 0.2331
2DYN (155 s)[41.7476 0.9808 0.0346
Proposed 3DYN (225 s)|39.9487 0.9747 0.0738
Iterative Network 4DYN (295 s)[39.0312 0.9718 0.0884
5DYN (365 )[38.1176  0.9688 0.0921

While the overall image similarity metrics (as measured by PSNR and SSIM)
remains comparable between the proposed network and the baseline models, the
proposed network exhibits a substantial reduction in enhancement error. For
instance, at the 5DYN time point, the enhancement error in the baseline model
rises to 0.2331, whereas the proposed network maintains a lower error of 0.0921.
This demonstrates the effectiveness of our iterative framework in preserving the
temporal dynamics of lesion enhancement.

Figure 3 presents representative examples of the actual images in the test set
and the synthesized images generated by the proposed network for three types,
along with the enhancement kinetic curves of signal intensity in the cancerous
region. Each kinetic curve includes the actual image, multiple outputs from the
proposed iterative network, and a single output from a baseline model trained to
predict the 5DYN time point. As shown in the kinetic curves, the baseline model
struggles to accurately capture fine-grained dynamic enhancement. In contrast,
the iterU-Net more accurately approximates the changes in curve slope, leading
to improved predictions. The model refines predictions step-by-step, ensuring
consistency across multiple time points.

4.3 Ablation Study

The ablation study evaluated the effect of warm-up training and temporal infor-
mation integration, which includes time embedding and ConvLSTM. For each
experimental setting, kinetic curves generated for the segmented cancerous re-
gion were analyzed using Spearman’s rank correlation coefficient (SCC) and dy-
namic time warping (DTW), while enhancement error at the 5DYN time point
was also measured. The results can be found in Table 2

Table 2. Ablation study on warm-up training and temporal information integration.

Enhancement
SCC(1)  |PTW() Error on 5DYN({)
w/o Warm-Up Training 0.8390 0.8031 0.1233

w /o Temporal Information [0.8390 0.8046 0.1146

Proposed Method 0.9203 0.6300 0.0921
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Fig. 3. Examples of actual images and synthesized outputs from the proposed network
for Type I (persistent), Type II (plateau), and Type III (washout) enhancement pat-
terns. On the right, the signal intensity curves represent the mean intensity value of
the segmented cancerous region at each time point.

As shown in Table 2, the proposed method achieved the highest SCC (0.9203)
and the lowest DTW (0.6300) and enhancement error (0.0921), demonstrating
the effectiveness of integrating temporal information and warm-up training. In
contrast, removing these components significantly reduced the network’s ability
to dynamics of enhancement.

5 Discussion and Conclusion

In this study, we proposed iterU-Net, an iterative network for synthesizing de-
layed contrast-enhanced images in breast MRI. Our findings demonstrate that
the synthesized kinetic curves closely approximate those from actual delayed-
phase images, outperforming those from single time-point prediction methods.
Unlike conventional trained approaches that require a specific time point as in-
put, our network flexibly handles inputs from various time points, making it more
adaptable to diverse scenarios. By predicting dynamic contrast enhancement us-
ing only early-phase post-contrast images, our approach enables characterization
of enhancement patterns while potentially reducing scan times in DCE-MRI.
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However, our study has some limitations. The iterative network requires a
warm-up stage for optimal performance, adding complexity to the training pro-
cess. Additionally, its iterative prediction approach results in higher computa-
tional costs compared to single time point prediction models. Our study was
also conducted on a limited dataset, highlighting the need for further validation
with larger and more diverse datasets. While our evaluation primarily focused
on the correlation between signal intensity kinetic curves, future studies should
employ larger, multi-vendor, multi-center cohorts using diverse datasets and in-
clude clinical assessments.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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