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Abstract. Computer-assisted interventions can improve intraoperative
guidance, particularly through deep learning methods that harness the
spatiotemporal information in surgical videos. However, the severe data
imbalance often found in surgical video datasets hinders the development
of high-performing models. In this work, we aim to overcome the data im-
balance by synthesizing surgical videos. We propose a unique two-stage,
text-conditioned diffusion-based method to generate high-fidelity surgi-
cal videos for under-represented classes. Our approach conditions the
generation process on text prompts and decouples spatial and temporal
modeling by utilizing a 2D latent diffusion model to capture spatial con-
tent and then integrating temporal attention layers to ensure temporal
consistency. Furthermore, we introduce a rejection sampling strategy to
select the most suitable synthetic samples, effectively augmenting exist-
ing datasets to address class imbalance. We evaluate our method on two
downstream tasks—surgical action recognition and intra-operative event
prediction—demonstrating that incorporating synthetic videos from our
approach substantially enhances model performance.
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1 Introduction

Computer-assisted intervention (CAI) aims to enhance surgical procedures by
integrating advanced computational techniques [18]. The rapid growth of deep
learning (DL) has further propelled CAI research, enabling applications such as
surgical action recognition, phase recognition, and the identification of critical
anatomical structures to offer context-aware guidance and decision support dur-
ing surgery [18]. Notably, these applications can benefit from temporal context
by analyzing surgical video sequences rather than individual frames.
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Fig. 1: Data imbalance among classes in surgical datasets. Left: Frequency of
different actions (G0-G7) in the SAR-RARP50 [22] dataset. Right: Occurrence
of staple line bleeding in distal pancreatectomy.

However, DL methods require large volumes of real, diverse, and annotated
surgical video data [18]. Although the availability of public surgical datasets has
increased, significant data imbalance remains a critical issue (see Fig. 1), which
causes DL methods to become biased toward the majority classes. While over-
sampling and data augmentation can mitigate this problem, they increase the
frequency of under-represented samples but do not address the lack of diversity.

Synthesizing data with generative models offers a promising solution to the
lack and imbalance of data [26,7]. In particular, diffusion models (DMs) [5] have
been applied to generate high-quality surgical images conditioned on tissue tex-
ture and shape [27,16]; however, these approaches lack temporal context—a crit-
ical factor for generating surgical videos. On the other hand, recent methods for
surgical video synthesis either (i) do not condition the generation on class labels,
which is needed to control the generation of new samples specifically for under-
represented classes [17], (ii) require pre-existing instrument masks to control the
synthesis of each video frame [14], (iii) rely on large volumes of data (100–200K
frames), which is typically not available for under-represented cases [4], or (iv)
use spatio-temporal models with high computational demand [17,4].

In contrast, we propose to leverage a pre-trained 2D latent diffusion model
– Stable Diffusion (SD) [23] – and extend it into a video diffusion model by
adding temporal layers to separately model video dynamics. By conditioning the
model on text prompts, we generate videos for specific classes. By separating the
spatial and temporal modeling, the training and inference efficiency is improved.
In particular, we start with a pre-trained SD model, which we finetune into a
common text-conditioned spatial diffusion model for all classes. Based on that,
we create the video diffusion model by freezing the spatial layers and adding
temporal layers, which are trained with additional class label conditioning to
learn class-specific dynamics for each under-represented class.

In addition, we introduce a rejection sampling procedure to select the most
suitable synthetic video samples for downstream surgical tasks.
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Fig. 2: Overview of the SurV-Gen method for surgical video generation.

We evaluate the abilities of SurV-Gen, our proposed surgical video diffusion
model, to synthesize videos of under-represented classes on two downstream
tasks: 1○ surgical action recognition on the SAR-RARP50 [22] dataset and 2○
video-level recognition of staple line bleeding (SLB) during pancreas transection
on an in-house dataset. To the best of our knowledge, we are the first to tackle
the data imbalance problem in surgical data science using diffusion models for
video generation. Our codebase: https://gitlab.com/nct_tso_public/surgvgen.

2 Method

Our video diffusion method, SurV-Gen, is trained in two stages. In stage 1, we
fine-tune a pre-trained Stable Diffusion model on video frames paired with text
prompts to capture the spatial content. In stage 2, with spatial layers frozen,
temporal transformer layers are inserted and trained to model dynamics, with
text conditioning applied throughout. During inference, SurV-Gen generates
class-specific videos from text prompts, which are refined via a sample selec-
tion pipeline. An overview of the method is shown in Fig. 2.

2.1 Stage 1: Fine-tuning Stable Diffusion

Stable Diffusion (SD) [23] was opted as the base text-to-image model in this work
because it is open-sourced and produces high-quality surgical images [19,27,16].
In SD, the diffusion process takes place in latent space by encoding the image x0

to z0 with an encoder E(x0). During the forward diffusion process, z0 is perturbed
to zt via

zt =
√
1− βt zt−1 +

√
βt ϵt−1 =

√
ᾱt z0 +

√
1− ᾱt ϵ0, 1 ≤ t ≤ T, (1)

https://gitlab.com/nct_tso_public/surgvgen
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where ϵt ∼ N (0, I), αt = 1 − βt, ᾱt =
∏t

s=0 αs, and the predefined βt controls
the noise strength at each step t. A denoising network ϵθ(·) is trained to reverse
this process by predicting the noise that was added by minimizing loss L:

L = EE(x0), y, ϵ∼N (0,I), t

[∥∥ϵ− ϵθ
(
zt, t, y

)∥∥2
2

]
, (2)

where y is the text prompt associated with image x0. ϵθ(·) is implemented as a
U-Net [24]. We fine-tune the SD model (pre-trained on natural images) in this
stage using images extracted from the surgical videos together with text prompts
that describe the corresponding class label.

2.2 Stage 2: Learning motion dynamics

In this stage, we extend the fine-tuned SD model to train directly on surgical
video sequences consisting of 16 frames. We adopt the method proposed in recent
works [12,3,8] by incorporating temporal transformer blocks [25] into the SD
model, placing them after each spatial layer. Since this stage focuses solely on
modeling temporal dynamics, the spatial layers are kept frozen.

Given a 5D video tensor v ∈ Rb×c×f×h×w, where b is the batch size, c and
f are the number of channels and frames respectively, and h and w are the
spatial dimensions, the frozen spatial layers process v frame-wise by reshaping
to (bf)×c×h×w. In the temporal layers, the sequences at each spatial location
are processed independently by reshaping v to (bhw) × f × c. Here, sequence
vin ∈ R(bhw)×f×c is projected and – after adding sinusoidal positional encoding
– processed using self-attention via:

vout = Attention(Q,K, V ) = Softmax
(
QKT

√
c

)
V, (3)

with Q = vinWQ, K = vinWK , and V = vinWV being query, key and value
vectors. In this way, each generated frame incorporates information from other
frames in the video clip, capturing the motion dynamics over time. The self-
attention is followed by a multi-layer perceptron. Following [28], we initialize the
output projection layers of the temporal blocks to zero and include a residual
connection. In addition to text prompts, we add an embedding of the class label
during training to serve as an additional conditioning signal and train with the
same loss as in Eq. 2.

2.3 Selection of generated data

A common approach for leveraging synthetically generated data in downstream
tasks is to combine it with real datasets to improve performance [7,17]. However,
prior works have shown that adding synthetic data can sometimes have adverse
effects [2,1]. To address this, we introduce a rejection sampling (RS) procedure to
select the most suitable synthetic videos from the pool of generated candidates.
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Table 1: Image-level quality comparison of generated video frames for SLB recog-
nition task after RS. Inf. time denotes the time for generating a video.

Method Trainable
params Inf. time CFID (↓) Density(↑) Coverage(↑) CMMD(↓)

LVDM [11] 548M 43.3s 185.45±4.30 0.20±0.007 0.40±0.006 3.98±0.10

Endora [17] 675M 15.3s 117.72±2.93 0.81±0.004 0.71±0.001 2.78±0.001

SurV-Gen 435 M 6.55s 108.30±1.22 0.90±0.002 0.65±0.003 2.25±0.01

Specifically, we train a discriminative model to predict class labels on the avail-
able real datasets and then use this model to evaluate the synthetic videos. A
synthetic video that was conditionally generated for class label l is only retained
if the model’s top-k predictions contain l.

3 Evaluation

3.1 Experiments

Downstream tasks For downstream evaluation, we use two challenging tasks
on small-scale intraoperative video datasets with imbalanced class distribution.

Action recognition (Task 1○): The task is to recognize which surgical action is
performed at any time t in a video. Here, we use the SAR-RARP505 dataset [22],
which consists of 50 videos of robot-assisted suturing with an average duration
of about 5min. We split them into 35, 5, and 10 videos for training, validation,
and testing. Seven different actions plus a background class are defined, including
the under-represented actions “Picking-up the needle” (G1), “Cutting the suture”
(G6), and “Returning/dropping the needle” (G7) (see Fig. 1). Action G5 (“Tying
a knot”) is not considered further because it occurs only in one test video. As DL
model, we train X3D [6], a 3D CNN for video recognition, to recognize the action
at time t by classifying the 16-frame video clip that is centered around time t. To
measure model performance, we compute the average video-wise Jaccard index
for each action.

SLB recognition (Task 2○): The task is to recognize whether or not staple
line bleeding (SLB) occurs in a video of the pancreas transection phase during
distal pancreatectomy. During pancreatic stapler transection, SLB represents a
visually recognizable event that has been associated with postoperative pan-
creatic fistula [29]. We use an internal dataset of 39 videos, each 3 min long
on average, where SLB occurred in 10 cases. The analysis of these deidentified
data was approved by the local institutional review board, and informed patient
consent was waived. We split the data into 25, 4, and 10 videos for training,
5 Train set: https://doi.org/10.5522/04/24932529.v1, test set: https://doi.org/10.

5522/04/24932499.v1, license: CC BY-NC-SA 4.0

https://doi.org/10.5522/04/24932529.v1
https://doi.org/10.5522/04/24932499.v1
https://doi.org/10.5522/04/24932499.v1
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Fig. 3: Qualitative comparison of generated video frames. In our approach (SurV-
Gen), the scissors are clearly visible during suture cutting (row 3), whereas in
other methods, the scissors appear only partially. Similarly, during the needle
return, the tools are consistently generated (row 6).

validation, and testing. As DL model, we train a ResNet-LSTM on the videos,
where the ResNet [10] extracts visual features from individual video frames and
the LSTM [13] aggregates these features over time. A linear classifier recog-
nizes the occurrence of SLB based on the final LSTM state. To measure model
performance, we compute balanced accuracy and F1 score.

Notably, we want to investigate the impact of adding synthetic training data
only for the under-represented classes and therefore chose solid baselines for the
downstream tasks instead of more sophisticated models. We repeat all experi-
ments on the downstream tasks three times and average the evaluation metrics
over these runs.

Baselines We selected Endora [17] and LVDM [11] as the video diffusion
baselines. Endora is a fully transformer-based diffusion model that jointly models
spatio-temporal components whereas LVDM uses a 3D U-Net architecture for a
3D latent video diffusion approach.
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Video generation On task 1○, we trained a single SD model for all the
selected classes (G1, G6, G7), after which separate spatio-temporal models were
trained for the three classes using label conditioning. Text prompts were con-
structed based on the class label as “action recognition task of <gesture>”
(task 1○) and “a complication of staple line bleeding” (task 2○) for both training
and inference. We train the diffusion models on the respective (patient-specific)
training sets of the downstream tasks and generate videos of 16 frames with
resolutions of 256×256 pixels for SurV-Gen and LVDM, and 128×128 pixels for
the Endora model.

Downstream evaluation For evaluating any of the video generation meth-
ods, we generated videos for each under-represented class and performed rejec-
tion sampling (RS) using a lightweight ResNet3D classifier [9] with thresholds
of k = 3 (task 1○) and k = 1 (task 2○). With SurV-Gen, we further conducted
an ablation study without rejection sampling.

3.2 Results and discussion

We evaluate the generated videos for both image quality and – by measuring their
benefit for downstream tasks – realism, diversity, and temporal consistency.

Image quality We evaluate the fidelity and diversity of the generated frames
using (i) the CFID metric [21] to quantify realism, (ii) the CMMD score [15]
to quantify unbiased image quality, which is particularly effective for smaller
datasets, and (iii) density and coverage metrics [20] to assess image quality and
diversity.

The results in Tab. 1 indicate that our SurV-Gen model synthesizes high-
quality surgical video frames compared to baseline methods. This finding is fur-
ther supported by the qualitative results in Fig. 3, where SurV-Gen effectively
generates surgical instruments, such as scissors and graspers, corresponding to
specific gestures. In contrast, the baseline models either omitted these tools
or produced poorly defined scenes, which we attribute to their dependence on
larger datasets for learning temporal dynamics. Moreover, the SurV-Gen model
features fewer trainable parameters and requires less inference time than the
baselines. Additional generated videos are provided as supplementary material.

Downstream evaluation Tab. 2 presents the results for task 1○. Extend-
ing the training set with synthetically generated videos (of under-represneted
classes) enhanced performance across all baseline models for most classes. No-
tably, our SurV-Gen model with rejection sampling achieved improvements of
12 and 14 points for classes G6 and G7, respectively, relative to using only real
videos. These results underscore the high quality of the synthesized samples and
the effectiveness of the rejection sampling strategy. A modest improvement was
observed for gesture G1 only with the Endora model. Further exploration of
model architectures with the addition of more synthetic samples can improve
performance for all the classes, which we leave for future work.

The results for SLB recognition is shown in Tab. 3. The addition of synthetic
videos to the real training data improved performance for both the SurV-Gen
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Table 2: Results on task 1○. We report the Jaccard index for each class, including
under-represented classes. (RS: rejection sampling)

Training data RS G0 G1 G2 G3

Only Real - 0.54±0.002 0.31±0.004 0.62±0.004 0.75±0.03

Real + LVDM ✓ 0.47±0.01 0.30±0.03 0.60±0.01 0.77±0.009

Real + Endora ✓ 0.54±0.03 0.34±0.06 0.61±0.01 0.77±0.01

Real + SurV-Gen ✓ 0.55±0.01 0.31±0.01 0.62±0.005 0.76±0.001

Real + SurV-Gen ✗ 0.52±0.10 0.25±0.05 0.60±0.01 0.75±0.002

G4 G5∗ G6 G7 Avg.

0.58±0.02 0.19±0.10 0.11±0.03 0.23±0.06 0.44±0.11

0.59±0.01 0.25±0.13 0.20±0.01 0.23±0.04 0.44±0.07

0.60±0.01 0.26±0.13 0.20±0.01 0.31±0.02 0.48±0.09

0.63±0.02 0.18±0.14 0.23±0.03 0.37±0.01 0.50±0.10

0.60±0.01 0.10±0.09 0.18±0.009 0.24±0.003 0.44±0.14

∗G5 occurs only in one test video.

Table 3: Results on SLB recognition (task 2○). (RS: rejection sampling)

Training data RS Bal. Acc (↑) F1 (↑)

Only Real - 0.74±0.08 0.71±0.01

Real + LVDM ✓ 0.72±0.10 0.69±0.03

Real + Endora ✓ 0.76±0.01 0.75±0.10

Real + SurV-Gen ✓ 0.81±0.05 0.78±0.04

Real + SurV-Gen ✗ 0.74±0.08 0.70±0.10

and Endora models compared to relying solely on real videos. Conversely, the
LVDM model did not show any performance improvements.

The ablation on rejection sampling underscores the critical role of synthetic
sample selection on both downstream tasks. For example on task 2○, SurV-Gen
with RS achieves a 7-point boost whereas the gains without rejection sampling
are only modest.

4 Conclusion

In this work, we introduce SurV-Gen, a light-weight two-stage diffusion frame-
work synthesizing high-fidelity surgical videos for underrepresented classes, thereby
addressing the data imbalance in surgical datasets. By separating spatial and
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temporal modeling, our approach can directly reuse pre-trained weights of large-
scale image diffusion models, which efficiently helps to learn video generation
with limited examples. For the first time, we show that synthesizing additional
training videos for under-represented classes helps to improve the performance
of video recognition models on two challenging surgical downstream tasks with
data imbalance. Here, selecting the most suitable synthetic videos using rejection
sampling proved to be a crucial step. Future work may extend this framework
to model additional under-represented classes by incorporating conditional sig-
nals, e.g., segmentation maps, from surgical simulations. Furthermore, a more
detailed analysis of the contribution of individual synthetic samples to down-
stream performance could provide valuable insights for further improving video
generation.
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