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Abstract. Emotion recognition plays a vital role in affective comput-
ing and mental health monitoring within intelligent healthcare systems.
While EEG captures rich emotional patterns, its clinical applicability
is limited by cumbersome acquisition and susceptibility to motion ar-
tifacts. In contrast, electrocardiogram (ECG) signals are more acces-
sible and less prone to artifacts, but lack direct semantic representa-
tion of emotions categories. To address this challenge, we introduce a
cross-modal alignment approach using contrastive learning. First, we
extract emotional features from EEG signals using a pre-trained en-
coder. Then, we align the ECG encoder to these EEG-derived features
through a contrastive learning framework, using sequence and patch level
semantic alignment based on a temporal patch shuffle strategy. This
method effectively combines the strengths of both modalities. Experi-
ments on the DREAMER and AMIGOS datasets show that our method
outperforms other baseline methods in emotion recognition tasks. Ad-
ditional ablation studies and visualizations further reveal the contri-
bution of core components. From a practical application perspective,
our approach facilitates accurate emotion recognition in scenarios where
EEG acquisition is impractical, providing a more accessible alternative
for real-world affective computing applications. The code is available at
https://github.com/pokking/ECG_EEG_alignment.

Keywords: Emotion Recognition · Contrastive Learning · Multi-Modal
Alignment · ECG-EEG Integration.

1 Introduction

Emotion recognition has become a transformative tool in modern healthcare, en-
abling automated assessment of psychological states for mental health monitor-
ing[10, 26]. Beyond clinical diagnostics for neurological disorders such as chronic
⋆ These authors contributed equally.
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sleep disturbances[3], these systems support personalized treatment strategies
and continuous tracking of affective states. They are particularly valuable in
monitoring conditions like exertion-induced fatigue[21] and acute pain[15].

Current emotion recognition systems primarily rely on two physiological sig-
nals: electroencephalography (EEG), which captures direct neural correlates
of emotion processing, and electrocardiography (ECG), which reflects auto-
nomic nervous system (ANS) activation. EEG offers high temporal resolution
and well-established spectral biomarkers, such as θ oscillations linked to pos-
itive emotions[18] and β /γ activity associated with emotional variations [1].
EEG feature extraction typically focuses on power spectral density (PSD) [25,
9] and differential entropy (DE) [8], with classification performed using machine
learning techniques. Advances in deep learning, including convolutional neural
networks (CNNs)[13, 12] and attention mechanisms[22, 7], have significantly en-
hanced EEG-based emotion recognition. Meanwhile, ECG provides insights into
cardiac dynamics associated with emotional states and has gained traction in
deep learning applications for affective computing[19].

Despite EEG’s precision in decoding emotions, its practical implementation
faces significant challenges. Complex electrode setups introduce motion arti-
facts [5], and signal instability limits reliability in real-world applications such
as telemedicine and virtual reality. In contrast, ECG is easier to acquire and
more resilient to noise but lacks the emotion-specific cortical information that
EEG provides. Recent research highlights the synchronization between the EEG
and ECG during emotional experiences [2], suggesting the potential for ECG
to infer emotional states more effectively. While previous studies have combined
ECG with imaging techniques [4] or EEG with other signals [23] to apply disease
diagnosis, few have explored direct temporal alignment between these comple-
mentary biosignals in emotion classification tasks.

In this paper, we propose a contrastive learning framework that enhances
ECG-based emotion recognition by transferring EEG’s semantic richness while
maintaining ECG’s practical advantages. Our key contributions comprise:

1. We introduce a contrastive learning-based framework for cross-modal seman-
tic alignment, enabling ECG to carry the semantic information from EEG.

2. Leveraging the synchronized temporal characteristics of ECG and EEG data,
we propose a patch-shuffling data augmentation technique and a two-level
contrastive alignment strategy for multi-dimensional alignment.

3. Our method achieves superior performance on both the DREAMER and
AMIGOS datasets, with ablation studies demonstrating its effectiveness and
robustness.

2 Methods

2.1 Data Acquisition and Pre-process

We used the DREAMER dataset [11] from the University of the West of Scot-
land and the AMIGOS dataset [16] from Queen Mary University of London. The
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DREAMER dataset consists of 23 subjects, each exposed to 18 video clips, with
corresponding ECG and EEG data recorded. The ECG data comprises two chan-
nels, sampled at 256 Hz, while the EEG data includes 14 channels, also sampled
at 256 Hz. Each subject assigns integer labels (1-5) to each data segment based
on arousal, valence, and dominance. The AMIGOS dataset includes 40 subjects,
who watched 16 short videos and 4 long videos, during which ECG and EEG
signals were recorded. Similarly, the ECG consists of two channels sampled at
256 Hz, and the EEG has 14 channels sampled at 256 Hz. In this dataset, sub-
jects assign floating-point labels (1-9) based on the arousal and valence rating
scales.

For data preprocessing, we followed these steps: First, we removed unusable
data, such as missing values, from both the DREAMER and AMIGOS datasets.
The processed data was then segmented into non-overlapping 10-second inter-
vals. Next, we applied Z-score normalization to the data from each channel.
Specifically, the data from each subject’s channels were concatenated, and nor-
malization was performed individually on each channel. This approach helps to
better capture common features across channels in relation to emotional changes.
Finally, to ensure consistency across the datasets, we adopted a binary classifica-
tion approach, categorizing the data into two classes for each emotional criterion.

2.2 Architecture

EEG Encoder Pre-training The EEG encoder architecture we use is iTrans-
former [14], which offers great flexibility and can adapt to varying numbers of
EEG channels. To enhance the EEG encoder’s ability to extract emotion-related
features from EEG signals, we designed a pretraining scheme. During the pre-
training phase, we first conduct reconstruction training on the EEG data, allow-
ing the encoder to fully learn the relevant features of the EEG signals. Following
this, we fine-tune the pretrained EEG encoder specifically for emotion classifi-
cation tasks. This fine-tuning enables the encoder to learn how to map EEG
features to distinct emotional categories, thereby improving its ability to accu-
rately extract emotion-related features.

Contrastive learning The overall alignment framework is illustrated in the
Fig. 1, which consists of three main components: Data Preparation, Embedding
to Latent Space, and Semantic Alignment.

Data Preparation In the Data Preparation stage, we apply data augmentation to
the preprocessed data. Given that ECG and EEG are collected simultaneously,
they should exhibit similar semantic information along the temporal dimension.
Therefore, we adopt shuffling as the data augmentation strategy. Specifically,
both EEG and ECG sequences are segmented into non-overlapping patches of
equal time steps, and these patches are then shuffled in the same order, resulting
in newly arranged EEG and ECG sequences.

Formally, for the i-th EEG sequence xi ∈ RC×L, we split it into Np = ⌊ L
M ⌋

patches, where each patch pi,j ∈ RC×M . The same process is applied to the ECG



4 Yi Wu et al.

sequence, ensuring consistency. This patch-based method aids in extracting local
features and improves the model’s ability to capture temporal dependencies.

Embedding to Latent SpaceData Preparation Semantic Alignment
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Fig. 1. Architecture of ECG and EEG Alignment: All parameters of the EEG encoder
will be frozen, while the parameters of the ECG encoder are trainable, allowing the
ECG features to align with the EEG features. Specially, only ECG signals are used as
input during testing. Different color schemes indicate data from different modalities.

Embedding to Latent Space In the Embedding to Latent Space stage, both aug-
mented and original EEG and ECG signals are input into the pretrained EEG
encoder and non-pretrained ECG encoder to extract feature representations.
Specifically, for the i-th EEG sequence xi and its shuffled counterpart x̃i, we
segment the sequence into patches. The encoded feature representation of the
original sequence is denoted as Pi,:, and that of the shuffled sequence as P̃i,:,
with i representing the sequence index. The same process is applied to the ECG
sequences.

Semantic Alignment In the Semantic Alignment stage, positive and negative
pairs are constructed based on time synchronization. Each pair consists of one
EEG and one ECG feature. Only strictly synchronized EEG-ECG pairs are
positive, while all others, including original and rearranged data from the same
sequence, are negative. The alignment is optimized using the InfoNCE loss [17]
function, defined as:

LInfoNCE = − log
exp(sim(q, k+)/τ)∑
j=0 exp(sim(q, k)/τ)

(1)

Where, q is the query sample, k+ is the positive sample (semantically related
to q), and k represents all contrastive samples (including k+ and N − 1 negative
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samples k−). sim(a, b) is the similarity measure between samples a and b, and
τ is the temperature coefficient controlling the distribution’s smoothness.

Based on the principles for constructing positive and negative pairs outlined
above, we construct positive and negative pairs in both the patch and sequence
dimensions and perform alignment. In the patch dimension, we divide the en-
coded features into non-overlapping patches, with only synchronously aligned
ECG and EEG patches in the time dimension considered positive pairs. Since
our goal is to align ECG and EEG such that ECG carries the semantic in-
formation of EEG, we treat pECG

i,j as the query sample and the corresponding
pEEG
i,j as the positive sample, forming a positive pair. It is important to note

that, considering potential correlations between patches within the same se-
quence, when constructing negative pairs, patches from the same sequence (e.g.,
{pEEG

i,n }n ̸=j) are not considered negative pairs. In contrast, EEG patches from
different sequences (e.g., {pEEG

m,n |m ̸= i, n = 0, . . . , Np − 1}) are considered neg-
ative pairs. Therefore, the set of all contrastive samples for pECG

i,j is Zp
i,j =

pEEG
i,j ∪ {pEEG

m,n |m ̸= i, n = 0, . . . , Np − 1}, and the contrastive learning loss in
the patch dimension is as follows:

Lp =
1

BNp

∑
i

∑
j

− log
exp(sim(pECG

i,j , pEEG
i,j )/τp)∑

pEEG
m,n ∈Zp

i,j
exp(sim(pECG

i,j , pEEG
m,n )/τp)

(2)

where B represents the batch size, and Np denotes the number of patches each
sequence is divided into.

In the sequence dimension, the alignment is based on the features of the entire
sequence. Similar to the alignment in the patch dimension, we treat PECG

i,: as the
query sample, PEEG

i,: as the positive sample, and the EEG features from other
sequences, {PEEG

m,: }m̸=i, as negative samples. Therefore, the set of all contrastive
samples for PECG

i,: is ZS
i = PEEG

i,: ∪{PEEG
m,: |m ̸= i}, and the contrastive learning

loss can be expressed by the following formula:

LS =
1

B

∑
i

− log
exp(sim(PECG

i,: , PEEG
i,: )/τS)∑

PEEG
m,: ∈ZS

i
exp(sim(PECG

i,: , PEEG
m,: )/τS)

(3)

The final contrastive loss function is as follows:

L = αLp + (1− α)LS (4)

where α ∈ (0, 1) is a fixed scalar hyperparameter that determines the relative
weights of each loss term.

Since our objective is to align ECG features as closely as possible to EEG
features, we freeze the parameters of the EEG encoder during the alignment
process and optimize the ECG encoder by updating its parameters using the
contrastive loss.

Classification Although the pre-trained ECG encoder learns partial EEG se-
mantics through cross-modal alignment, it lacks full modeling of emotion-related
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temporal-spectral features in ECG. Moreover, it cannot directly perform emo-
tion recognition without a classifier. To address this, we attach a fully connected
classifier and fine-tune both on the target dataset. By minimizing cross-entropy
loss, the model extracts emotion-specific features while retaining cross-modal
knowledge. The final fine-tuned model enables end-to-end emotion recognition.
And it should be noted that only ECG signals are used as input at this stage.

3 Experiments and Results

3.1 Experimental Setup

We evaluate our method by randomly dividing the preprocessed DREAMER and
AMIGOS datasets into five folds for training and validation. The hardware used
includes an NVIDIA GeForce RTX 4090D GPU (driver version 550.67, CUDA
12.4) and an Intel(R) Xeon(R) Platinum 8474C CPU. We use PyTorch (version
1.10.1) as the deep learning framework.

3.2 Experimental Results

Our baseline selection addresses multiple aspects to ensure a thorough evalua-
tion. First, since we adopt a temporal contrastive learning approach, we selected
two relevant methods from this domain: TS-TCC [6] and TFC [24], to high-
light the advantages of our method over other similar approaches. Second, to
demonstrate the effectiveness of our method in emotion recognition, we chose
two existing methods that focus on different modalities: SSL-ECG [19], which
specializes in ECG, and EEG-Conformer [20], which focuses on EEG. The de-
tailed experimental results are presented in Table 1 and Table 2.

Table 1. Average performance on the DREAMER dataset.

Methods Arousal Valence Dominance
ACC F1 AUC ACC F1 AUC ACC F1 AUC

TS-TCC 0.6099 0.6037 0.6479 0.5633 0.5591 0.5902 0.6029 0.6025 0.6314
TFC 0.5407 0.5336 0.5432 0.6006 0.3990 0.5145 0.5272 0.4732 0.5264
SSL-ECG 0.8546 0.6743 0.7423 0.8256 0.6649 0.7657 0.8205 0.7194 0.7714
EEG-Conformer 0.7131 0.7545 0.7073 0.6766 0.6422 0.6233 0.7072 0.7076 0.6806
w/o align 0.8140 0.8136 0.8969 0.7924 0.7849 0.8711 0.8039 0.8022 0.8858
w/o shuffle 0.8237 0.8237 0.9035 0.8431 0.8371 0.9188 0.8786 0.9489 0.8777
w/o patch-align 0.8497 0.8494 0.9295 0.8128 0.80674 0.8928 0.8349 0.8338 0.9140
w/o seq-align 0.8859 0.8857 0.9579 0.8616 0.8578 0.9373 0.8823 0.8814 0.9529
Ours 0.8923 0.8921 0.9611 0.8787 0.8758 0.9482 0.8866 0.8858 0.9558

The results show that our method surpasses baseline models in accuracy,
F1, and AUC on both datasets. While SSL-ECG is optimized for ECG-based
emotion recognition, our approach outperforms it by leveraging EEG alignment,
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demonstrating that integrating EEG’s semantic information enhances emotion
recognition.

3.3 Ablation Study

To assess the impact of each component, we conducted ablation experiments
by removing alignment, shuffle, patch-level alignment, and sequence-level align-
ment, denoted as w/o align, w/o shuffle, w/o patch-align, and w/o seq-align.
The results are presented in Table 1 and Table 2.

The results demonstrate that our method outperforms all variants, with the
absence of EEG alignment having the most significant impact, thereby under-
scoring the crucial role of EEG semantic information in emotion recognition.
Furthermore, the results of the "w/o shuffle" condition confirm that time syn-
chronization serves as a reliable criterion for defining positive and negative pairs.
Additionally, alignment at both the patch and sequence levels contributes to
enhanced performance, highlighting the effectiveness of multi-scale alignment
between ECG and EEG.

Table 2. Average performance on the AMIGOS dataset.

Methods Arousal Valence
ACC F1 AUC ACC F1 AUC

TS-TCC 0.8110 0.5044 0.5174 0.7374 0.5624 0.6308
TFC 0.8101 0.4475 0.5377 0.7254 0.6128 0.5281
SSL-ECG 0.8472 0.7300 0.7764 0.8239 0.7669 0.8213
EEG-Conformer 0.8187 0.5481 0.6423 0.7475 0.5374 0.6072
w/o align 0.8188 0.6984 0.7197 0.7813 0.7508 0.7791
w/o shuffle 0.8278 0.6982 0.8067 0.8095 0.7526 0.8497
w/o patch-align 0.8277 0.6978 0.8124 0.8071 0.7525 0.8530
w/o seq-align 0.8327 0.7132 0.8032 0.8280 0.7767 0.8497
Ours 0.8489 0.7511 0.8124 0.8341 0.8271 0.8735

To provide a more intuitive demonstration of the architecture’s effectiveness,
we conducted two visualization experiments. The first visualizes the similarity
matrix of ECG and EEG features before and after alignment, while the sec-
ond uses t-SNE for dimensionality reduction to analyze feature distributions.
As shown in parts (a), (b) of Fig. 2 , by comparing the cosine similarity of fea-
tures encoded by aligned and non-aligned ECG and EEG encoders, we observe a
marked improvement following alignment. For the aligned case, the cosine sim-
ilarity range is [-0.4661, 0.2892], with an average of -0.1802, whereas for the
non-aligned case, the range is [-0.6261, -0.2758], with an average of -0.4963.
This alignment method improves the average cosine similarity by approximately
31.7%, demonstrating its efficacy in enhancing the similarity between ECG and
EEG features.
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Fig. 2. Results of the visualization experiments.Parts (a), (b) are the similarity matrixs
of w/o align and align. Parts (c), (d) are the feature distributions of w/o align and
align.

As shown in parts (c), (d) of Fig. 2, the aligned encoder exhibits clearer
class boundaries and more compact intra-class distributions compared to the un-
aligned encoder. Without alignment, the feature distributions of different classes
are more entangled, class boundaries are ambiguous, and intra-class features are
scattered, resulting in weaker discriminative capability. In contrast, after align-
ment, the clustering effect is significantly improved, inter-class separability is en-
hanced, and intra-class consistency is strengthened, indicating that the encoder
can extract more discriminative features. This demonstrates that aligning ECG
and EEG signals effectively enhances the model’s classification performance and
semantic coherence.

4 Conclusion

In this work, we propose a contrastive learning framework for cross-modal phys-
iological signal alignment, enabling ECG signals to acquire EEG-like semantic
representations. Our approach leverages a two-level alignment strategy (patch-
level and sequence-level) and data shuffling to effectively align the semantics
between EEG and ECG signals. Experiments on the DREAMER and AMIGOS
datasets achieve the best performance compared to other baselines, confirm-
ing the framework’s ability to align EEG semantics with ECG features. Look-
ing ahead, we plan to extend this framework to other physiological signals and
broaden its application to various tasks.
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