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Abstract. A digital twin (DT) is a dynamic virtual model that mir-
rors a physical system, with promising applications in surgical planning,
guidance, and outcome assessment. While DTs can represent various key
aspects of surgery, such as patient anatomy and surgical tools, implants
remain difficult to integrate due to tracking challenges related to occlu-
sions by soft tissue and their small size. Consequently, current surgical
DTs lack implant integration, a critical limitation in trauma surgery. To
address this challenge, this work presents an automated method to inte-
grate surgical implants—plates and screws—into DTs during bone frac-
ture platings. The solution leverages surgical tracking data to analyze
interactions between surgical tools and patient anatomy. By combining
deterministic algorithms with a machine learning-based activity classi-
fication model, DTs of implants can be reconstructed without requiring
direct tracking. A study involving 28 participants—5 medical students,
12 residents, and 11 attending physicians—evaluated detection reliability
and geometric accuracy on a comminuted ulnar fracture. Results showed
a screw detection rate of 96.4 % and a plate detection rate of 100 %
across 112 screws and 28 plates. Screw and plate placement had Root
Mean Square Errors of 1.52 mm and 0.94 mm respectively—comparable
to or better than existing surgical DTs. These findings confirm the feasi-
bility of dynamic implant integration, marking a significant step toward
comprehensive DT solutions for trauma surgery. This advancement has
the potential to enhance intraoperative visualization and postoperative
assessment, ultimately improving patient care.

Keywords: Digital Twin - Surgical Guidance - Implant Integration

1 Introduction

Digital twins (DTs) are virtual representations that dynamically mirror the
physical state of their real-world counterpart by continuously receiving updates
from data collected via sensors [11,23]. In surgical settings, DTs model patient
anatomy, instruments, staff, and the operating room using various sensing modal-
ities [1,5]. Patient anatomy can be reconstructed from medical imaging, such
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as CT and MRI [10,24]. Instruments and staff movement can be tracked us-
ing RGB-D and infrared cameras [7,13], while the operating room can be cap-
tured through laser scans [14]|. Thereby, DTs can help to enhance patient care
through various stages of surgical procedures [8, 22]. Before surgery, they enable
enhanced planning by simulating patient-specific anatomies [9] and provide a
risk-free training environment for practice [6,9,12]. During surgery, they can
support clinical decision-making by offering 3D visualizations to surgeons [3, 18,
17,21] and can serve as the basis for navigation in robot-assisted surgery [15, 12,
6]. Post-surgery, they enable the collection of detailed records of outcomes, sup-
porting post-operative decision-making [2, 16]. Recent studies have demonstrated
such concepts in various surgical fields by successfully modeling patient anatomy
and surgical instruments [21, 19, 20]. Hein et al., in their proof-of-concept study,
were even able to create an entire digital environment from a spinal surgery
that included patient anatomy, instruments, staff, and the operating room using
multiple sensor modalities [14].

However, a key limitation of current DT implementations in surgery is the
exclusion of surgical implants, which are essential in trauma procedures such
as fracture fixation with screws and plates. The lack of implant integration in
DTs arises from two key challenges: (1) reliable tracking is difficult due to oc-
clusion by soft tissue, and (2) even when visible, their small size makes accurate
tracking challenging—particularly for screws. To address this, we propose an
indirect approach that eliminates the need for direct implant tracking. Instead,
a standard tracking system to monitor reliably trackable instruments and bone
fragments is used. By analyzing their interactions with deterministic algorithms
and machine learning models, the placement of screws and plates is dynamically
reconstructed within the DT.

To assess the feasibility of this method, a study involving 28 participants,
including 5 medical students, 12 residents, and 11 attending physicians, was
conducted using a phantom setup where they performed a bridge plating for a
comminuted ulnar fracture. It was evaluated how many of the surgical plates
and screws could be recognized and how accurately their placement compared
to their physical counterpart was. The results demonstrate that the proposed
solution can (1) reliably detect surgical implants and (2) accurately reconstruct
their placement within DTs. This, in turn, enhances the clinical utility and inte-
gration potential of DTs in trauma surgery for plating procedures across differ-
ent anatomical locations—such as the distal radius, proximal humerus, or tibial
shaft—and ultimately improves patient care.

2 Methods

2.1 Digital representation of tools and bones

The proposed workflow—illustrated in Fig. 1—incorporates positions and orien-
tations (6D poses) of drills, screwdrivers, and the two primary bone fragments
retrieved by a surgical tracking system. This data is continuously transmitted to
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a Unity 3D game engine, running at 120 Hz. The 6D pose information is then ap-
plied onto corresponding 3D meshes, which are generated through 3D scanning
for surgical instruments and CT segmentation for bone structures. This process
enables the real-time digital representation of surgical tools and bones.

1. Digital representation of
tools and bones

3. Implant reconstruction
within DT

Screwing | I Screw |
detection . placement 1

| Drilling
| detection

Fig.1: Overview of the implant reconstruction pipeline. Digital representation
of tools and bones is obtained via 6D pose estimation. Tool-bone interactions
are analyzed: drilling is detected via deterministic methods, screwing is classified
using an LSTM model. Based on these interactions, DTs of screws and plates
are reconstructed without requiring direct implant tracking.

2.2 Analysis of interactions between tools and bones

Drilling detection Before a screw can be placed, a drill hole must be created,
which is recognized using a deterministic approach. These drill holes establish
reference trajectories along which screws can be positioned. A drilling trajectory
is generated within the DT once the drill tip advances through the cortex of a
bone fragment. The action is classified as drilling while forward motion continues
and the traversed volume is marked accordingly. Drilling is considered complete
when the drill retracts fully along its axis and exits the bone. The trajectory
is estimated using linear least squares regression minimizing the deviation from
the drilled volume.

Screwing detection Unlike drilling, screwing cannot be detected through di-
rect interaction with the bone, as the screwdriver does not physically engage
with the tracked bone fragments. Therefore, a probabilistic approach is em-
ployed, using a Long Short-Term Memory (LSTM) network to detect screwing
activities—screwing in, unscrewing, or other actions—at 30 Hz. The implemen-
tation of the screwing detection model is explained in Fig. 2.
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2.3 Implant reconstruction within DT

Screw placement A screw is instantiated in the DT when the screwdriver’s
longitudinal axis aligns with a drill hole, and the screwing detection model pre-
dicts a screwing-in activity. The screw length is determined via raycasting from
the screwdriver tip to the bone surface. Once created, the screw is rigidly at-
tached to the corresponding bone fragment to ensure synchronized movement. If
screwing-in is detected, the screw advances with the screwdriver; if unscrewing
is recognized, it retracts, provided the screwdriver tip remains in contact with
the virtual screw head. This process determines both screw length and insertion
depth.

Plate placement Once the third screw is placed, plate positioning is initiated
within the DT, beginning after a detected screw-driving activity. A point-set reg-
istration aligns the plate by matching its holes to the positions of the set screws.
Since the correspondence between screws and plate holes is initially unknown,
a brute-force search assesses all possible screw-to-hole mappings. The configu-
ration that minimizes the average distance between plate holes and screws after
alignment is selected. As a final optimization step, the plate is rotated along
its longitudinal axis to ensure its surface orientation aligns with the average
longitudinal axis of the screws.

P(k |u[t"’“~"'f£]), with k € {Screwing in, Screwing out, Other}

FC-NN -
0Xi41
at
ood Yis1 Translational

ot [~ velocities
0241

LST™ LST™ L‘s"l‘M ot |
cell I:| |:> — axq([+l)
T, at
0Yq(i+1) .
ot Rotational
[~ velocities

0Zq(i+1)

i i at
g N N - Wqiien)

ANy

Input sequence

Fig. 2: The screwing detection model consists of a 4-layer unidirectional LSTM,
followed by a fully connected classification layer. Input features—translation and
rotation velocities from screwdriver tracking—are downsampled to 60 FPS and
processed in 80-frame sequences with a window shift of 2, yielding an output
frequency of 30 FPS. The model was trained using the Adam optimizer and
CrossEntropyLoss. Training data consisted solely of 1 hour of engineer-recorded
activities, while validation was conducted in a phantom setup with 2 hours of
recordings from 11 surgeons, achieving 96.6 % accuracy and an F1-score of 90.9 %
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3 Experimental Setup

This experiment aimed to evaluate the detection reliability—percentage of cor-
rectly identified screws and plates—and the geometric accuracy of implants
within the DT reconstructed using the proposed method. The study was con-
ducted with a phantom setup, in which 28 participants—5 medical students, 12
residents, and 11 attending physicians—performed the procedure. All partici-
pants provided informed consent, and the study was conducted in accordance
with ethical guidelines.

3.1 Hardware and Phantom Setup

A phantom setup with synthetic bones (Synbone AG, Switzerland) simulating a
comminuted right ulnar fracture was used. The bones were secured in a custom
holder for anatomically realistic positioning, which can be seen in Fig. 3a. The
Atracsys Fusion Track 250, an operating room-certified navigation system, pro-
vided tracking input. The 3D meshes of the surgical tools were obtained using
a handheld 3D scanner (Shining 3D, China), while the 3D meshes of the syn-
thetic bones were derived from CT scan segmentation. Markers were mounted on
both the surgical tools and bone holders. An Iterative Closest Point algorithm
was used to align the tracking markers with their corresponding 3D models and
determine their relative poses. All data were processed on a CPU (11th Gen
Intel(R) Core(TM) i7-1165G7).
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Fig.3: a) Phantom Setup with synthetic bones secured in a custom holder and
b) tools used to perform the procedure equipped with fiducial markers
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3.2 Procedure

All participants followed the same standardized protocol. Before performing
the training case, they were instructed via a video. The video was designed
in accordance with the AO fracture management principles—AQ Classification
22C1 [4]— to demonstrate the treatment of a comminuted ulnar fracture using
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a bridge plate. Additionally, written instructions were provided in front of the
training setup to guide participants through the procedure. The tools required
for the procedure were placed on a separate table next to the setup, as shown
in Fig. 3b. The participants used these tools independently without assistance.
Assistance was only provided when selecting screws, to ensure that participants
received the desired screw length.

3.3 Evaluation

To assess the accuracy of the reconstructed DTs of the implants, their positions
were compared to precise ground truth measurements obtained using the Atrac-
sys Fusion Track 250 navigation system. The ground truth screw positions were
measured using a custom-designed marker (see Fig. 4b) that fits precisely into
the screw drive, enabling accurate capture of both position and orientation along
the longitudinal axis. Additionally, all lengths of the selected screw were man-
ually reported. The ground truth plate position was determined via point-set
registration, where reference points were collected using a pointed marker and
aligned with their corresponding digital reference points. The reconstructed DT
was then compared to the ground truth measurements illustrated in Fig. 4a.

Screw placement accuracy was evaluated by measuring: (1) positional devi-
ation along the screw’s longitudinal axis (axial shift) and perpendicular to the
longitudinal axis (lateral shift), (2) angular deviation between the reconstructed
and measured longitudinal axes (axial angle), (3) deviation from the digitally es-
timated to the effectively recorded screw length, and (4) the Root Mean Square
Error (RMSE) of all points between reconstructed and measured screw surfaces.

Plate placement accuracy was evaluated by measuring: (1) positional devia-
tion along the x, y, and z axes, (2) angular deviation between the reconstructed
and measured plate orientations in terms of pitch, yaw, and roll, and (3) the
RMSE of all points between reconstructed and measured plate surfaces.

y-axis/yaw

lateral

z-axis/pitch axial

(a) (b)

Fig. 4: a) Implant placement accuracy evaluation, showing the reconstructed DT
(blue) and ground truth DT (green) and b) custom-designed marker to measure
ground truth of the screws
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4 Results

All 28 procedures were successfully completed and included in the evaluation. In
total, 112 screws (28 x 4 per procedure) and 28 plates were placed. Examples
of digitally reconstructed twins can be seen in Fig. 5

Fig. 5: Study examples of DTs with unsuccessful and successful plating

4.1 Detection rates

Of the 112 placed screws, 108 were correctly detected, yielding an average de-
tection rate of 96.4 %. All 28 plates were correctly identified.

4.2 Geometrical accuracies

Screws Evaluation of screw placement accuracy in Fig. 6 shows an average
lateral deviation of 2.18 mm and an average axial deviation of 1.07 mm. The
angular deviation between the reconstructed and measured longitudinal axes
averaged 5.0°. The deviation from the digitally estimated to the effectively man-
ually recorded screw length was on average 0.85 mm. The RMSE between re-
constructed and measured screw surfaces was 1.52 mm.

Plates Evaluation of plate placement accuracy in Fig. 6 shows an average ab-
solute positional deviation of 2.37 mm. The angular deviation between the re-
constructed and measured plate orientations in terms of pitch, yaw, and roll
averaged 1.6°. The RMSE between reconstructed and measured plate surfaces
was 0.94 mm.

5 Discussion & Conclusion

The study’s results demonstrate the feasibility of the proposed method for inte-
grating implants into DTs for trauma surgery. The high detection rates for both
plates and screws across all procedures demonstrate the reliable reconstruction
of implant DTs. The four undetected screws (out of 112) can be attributed to
tracking failures caused by hand occlusions of the markers. An accurate recon-
struction of the DTs of implants could be demonstrated, with a low RMSE for
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Fig. 6: Accuracies of reconstructed DTs, screws (left) and plates (right).

screws (1.52 mm) and especially for plates (0.94 mm). Plate positioning was
particularly precise, as it was derived from multiple detected screw positions,
allowing individual screw errors to average out and reducing overall deviation.
In contrast, screws exhibited a slightly higher RMSE due to greater deviations
in lateral positioning and axial angles. This likely lies in the assumption of rigid
behavior for the drill bit and the bone fragments, whereas in practice, slight
elastic deformations occur during drilling. Additionally, minor registration er-
rors between tracking markers and tools contribute to deviations.

Comparison with previous studies further underscores the method’s accuracy.
The RMSE between reconstructed and measured implant surfaces is comparable
to the 1.39 mm error reported by Shu et al. for the DT of a patient anatomy [21]
and substantially lower than the 6.84 mm error reported by Hein et al. for the DT
of a surgical environment [14]. This demonstrates that the proposed method can
effectively complement existing DT solutions, providing a more complete digital
representation of the surgical setting. Beyond intraoperative visualization and
guidance, the proposed method for implant reconstruction in DTs holds signifi-
cant potential for postoperative applications. DT data can support finite element
method analyses to assess implant stability and guide treatment strategies, as
suggested by Aubert et al. [2]. Notably, this approach eliminates the need for
additional intraoperative imaging or postoperative CT segmentation, allowing
seamless integration into existing clinical workflows.

Future work should focus on validating the proposed method in real surgical
environments, such as cadaveric studies or clinical trials. A key challenge in clin-
ical settings is the occlusion of tracking markers due to crowded operating rooms
and soft tissue. To address this, future research could explore markerless track-
ing or the integration of complementary sensing modalities to ensure robustness.
To enhance intraoperative utility, the current workflow, where plate reconstruc-
tion begins only after the third screw, is a limitation. Future work could extend
the method to enable earlier plate estimation, providing more timely feedback
during surgery. Research could also investigate integration into augmented real-



Integration of Surgical Implants into Digital Twins 9

ity systems or robotic workflows to assess its impact on surgical precision and
efficiency. Additionally, future studies could examine how reconstructed digital
twins support postoperative outcome assessment in plating procedures. Another
promising direction is their use in simulation-based training, where DTs may
provide objective, scalable performance feedback for surgical education.

In conclusion, this work presents a novel method for integrating surgical
implants into DTs for trauma surgery, demonstrating reliable and precise implant
reconstruction. Using an indirect approach, surgical tracking can be leveraged
to reconstruct implants within DTs by analyzing interactions between surgical
tools and patient anatomy, eliminating the need for unfeasible direct implant
tracking. The method represents a significant step toward comprehensive DT
solutions with potential benefits in intraoperative guidance and postoperative
assessment, ultimately improving patient care.
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