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Abstract. Functional magnetic resonance imaging (fMRI) is essential
for understanding and diagnosing brain disorders. However, the challenge
of small sample sizes, due to high acquisition costs and low annotation
efficiency, hinders deeper exploration of the mechanisms underlying brain
diseases. Recently, generative diffusion models have shown great poten-
tial for time series data generation, but directly using them for fMRI
generation still has some issues. Firstly, most of them are designed for
single time series, ignoring the significant dependency information be-
tween multiple time series when applied to fMRI. Since fMRI time series
from different brain regions exhibit correlations, it is necessary to con-
sider this characteristic when generating fMRI. Secondly, the generation
process often lacks the involvement of label information, which limits
their applicability in facilitating classification tasks. Thirdly, the align-
ment between the generated data and the target tasks is often insuffi-
cient, limiting its effectiveness for brain disorder diagnosis. To address
these issues, we propose a novel task-aligned fMRI generation method
based on the diffusion model. Specifically, a functional brain network
(FBN) is incorporated into the diffusion model as prior knowledge to
guide and constrain the data generation process, ensuring that the gen-
erated fMRI respects the functional connectivity characteristics observed
in actual fMRI. To effectively and flexibly generate class-specific fMRI,
a representative class-wise FBN is utilized as the prior FBN. Meanwhile,
the proposed method ensures that the generated fMRI is well aligned
with target brain disorder classification tasks. Extensive experiments are
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conducted on three datasets, consistently demonstrating the superior
performance of the proposed method.

Keywords: Diffusion Model - Functional Brain Network - fMRI - Brain
Disorder Diagnosis.

1 Introduction

Functional magnetic resonance imaging (fMRI), with its ability to detect ab-
normal brain activity, has played a crucial role in diagnosing various brain dis-
orders, such as mild cognitive impairment (MCI) of early Alzheimer’s disease
(AD) and vascular cognitive impairment (VCI) [3,4, 18]. Meanwhile, computer-
aided diagnosis (CAD) technology has provided powerful capabilities to uncover
latent patterns within fMRI data, further advancing research in brain disorders.
However, the superior performance of CAD systems often relies on large-scale,
high-quality datasets, while the fMRI-based brain disorder diagnosis is typically
limited by the small sample size due to the high cost and difficulty of collecting
medical samples. Data generation technology, capable of extending datasets, is
increasingly recognized as a promising solution to promote diagnosis accuracy
and reliability of CAD systems [11, 20, 25].

Typical generative approaches mainly include generative adversarial network
(GAN) [8,17,19], variational autoencoder (VAE) [12, 15, 16] and diffusion model
(DM) [10,29]. These models have found wide applications in fMRI generation.
For example, the deep recurrent VAE (DRVAE) [21] and VAE-GAN [22] models
are proposed to model and generate fMRI. In contrast to GAN and VAE, DM
is more stable in generating high-quality data [2,5]. While BrainNetDiffusion
[32] leverages the strengths of DM to generate FBNs and focuses on the impor-
tant functional connectivity of fMRI, it overlooks that the generated FBNs would
lose the dynamic temporal information present in the fMRI time series and lacks
the flexibility to align with downstream models that dynamically construct and
analyze FBNs from raw time series. Therefore, it is crucial to develop a diffu-
sion model-based fMRI time series generation model that retains the temporal
dynamics and can be well aligned with downstream tasks.

Despite diffusion models showing advantages in generating various types of
time series data, direct application of them in fMRI generation still has some
drawbacks. Firstly, most diffusion models for time series generation are designed
to generate single sequences in fields such as audio and finance [9, 14, 24|, which
often fail to fully consider the significant correlation information between differ-
ent sequences when applied to multiple time series, i.e., fMRI. Note that, the
functional connectivity (FC) information between brain regions, which presents
the inherent functional interactions of the brain regions, is the crucial charac-
teristic of fMRI signals [6,27]. Therefore, integrating these complex and non-
negligible inter-regional interactions into the generation method can help gener-
ate more accurate fMRI. Although the latest studies [26, 31] have proposed mod-
els for generating multiple time series, they still have some limitations. These
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models typically generate data without label information, reducing their appli-
cability in generating multi-class datasets for classification tasks. Additionally,
most generation methods are designed only for data generation, which often fail
to align with the downstream tasks, e.g., brain disorder classification.

To address the above limitations, we propose a novel task-aligned fMRI time
series generation model, named TA-fMRI-GM, based on the diffusion model and
incorporating class-wise FBN as prior knowledge. Concerning the first issue, the
prior FBN, which represents the functional dependency patterns between brain
regions, is introduced to guide each step of the generation process, ensuring that
the FBN of the generated fMRI aligns with the prior FBN. This enables the
generation model to generate fMRI data that more closely resemble the actual
fMRI samples. To address the second issue, we propose using the representative
FBN of each class as the prior FBN during the generation process to flexibly
generate fMRI of the corresponding category, extending the applicability of the
generated data for classification tasks. Regarding the third issue, to ensure align-
ment between the generated fMRI and downstream tasks, the generated fMRI
is repeatedly evaluated on brain disorder classification tasks. The superior per-
formance across multiple datasets consistently demonstrates the effectiveness of
the proposed fMRI generation model.

Major contributions of this paper can be summarized as follows:

1. We propose a novel method for fMRI generation, which introduces the prior
FBN into the diffusion model to guide and constrain the generation process,
allowing the generated fMRI to fully respect the functional connectivity char-
acteristic and more closely resemble the actual fMRI.

2. The proposed method can flexibly generate fMRI data across different cate-
gories by setting the class-wise FBN with label information as the prior FBN
during the generation process.

3. The fMRI data generated from the proposed generation method is well
aligned with the brain disease classification tasks.

4. Comprehensive evaluations are conducted to validate the effectiveness of the
proposed method, and experimental results consistently demonstrate that
the generated fMRI could benefit the performance of brain disease diagnosis.

2 Proposed Method

2.1 Overall architecture

The proposed model, designed to generate the fMRI time series that fully consid-
ers the rich and complex functional dependencies among different brain regions,
is based on the diffusion model and is induced with prior FBN during the data
generation process. Meanwhile, this method flexibly generates fMRI of different
classes by introducing the class-wise FBN that contains label information. As
illustrated in Fig. 1, the proposed method consists of two main processes: the
training process, which is utilized to learn the latent features and data distribu-
tion, and the generation process, which generates fMRI data from the random
noise and is guided with the class-wise prior FBN.
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Fig. 1. The overview of the proposed model. (a) is the training process of the diffusion
model. (b) represents the generating process guided with class-wise prior FBN.

2.2 Training Process of Diffusion Model

As shown in Fig. 1(a), the diffusion model is a probabilistic model that involves
a forward process and a reverse process during the training phase.

Forward Diffusion Process: The forward process of the diffusion model pro-
gressively adds noise to the input data. Specifically, for the input time series
denoted X, the Gaussian noise is successively added over T' steps, obtaining
X1, Xo, ..., X7, where X; denotes the noisy data at the ¢-th step, and the final
X is the pure noisy time series. Mathematically, the process from X;_; to X,
satisfies the following transition distribution:

0(Xi | Xe) =N (X V1= BiXi1, 0 1) (1)

where (3; denotes the noise variance that controls the amount of noise introduced
at each step and I is the identity matrix. This indicates that X follows a normal
distribution with mean /1 — 3, X;_1 and variance 3; I. To generate X; at a
specific step ¢, the noise-adding process can be reparameterized as:

X, = \/17525X0+\/E6t,6t~./\/'(0,1), (2)

where ¢ is sampled from the standard normal distribution A(0,I), and B; rep-
resents the cumulative noise variance.

Reverse Diffusion Process: The reverse process of the diffusion model aims
to denoise the final noisy data X7 and gradually recover the original data X
from X7p. Specifically, it learns the joint probability distribution from Xg to
X, which can be formulated as:

po(Xo.r) = p(X7) [ [ po(Xe-1|X2), (3)

t=1
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where the reverse conditional probability distribution from X; to X;_; can be
expressed as:

Po(X—1|Xy) = N (X1 po (X, t), Dp( Xy, 1)), (4)

where the mean py( Xy, t) and covariance Xy(X;, t) can be predicted from a noise
prediction network, e.g., the Attention Residual U-Net [23], and 6 represents the
parameters of the network. In this case, to make the predicted noise eg(X¢,t)
more consistent with the added noise ¢; of the forward diffusion process, the loss
function L can be defined as:

L =Exye,~n01),elller — o ( X, 1)[13]- (5)

2.3 Generating process guided with prior FBN

Through the above training process, the model can capture the underlying dis-
tribution of fMRI data and learn how to progressively recover the original data
from pure noise. However, the traditional generating process fails to account for
the inherent functional dependencies among the time series of different brain
regions, which are crucial for generating accurate fMRI signals. To this end, we
propose incorporating a prior FBN to guide the data generation process, which
contains rich functional connectivity information between brain regions. Specif-
ically, as shown in Fig. 1(b), the generated data X, at a specific step is guided
to exhibit similar functional connectivity information as in the prior FBN via
the following mechanism:

o Ci—Cyllp 0C,
A oC, X, (6)

where C; denotes the FBN calculated from X; using the Pearson correlation
coefficient. C), represents a prior FBN obtained by averaging the FBNs of ac-
tual fMRI samples, || - ||F indicates the Frobenius norm used to quantify the
discrepancy between C; and C),, A is the update coefficient, and this FBN guid-
ance is conducted every At step. Furthermore, to flexibly generate fMRI data
from different classes, e.g., normal control (NC) and AD patients, the proposed
method introduces the label information into the generation process. Specifi-
cally, by defining the prior FBN as the representative class-wise FBN derived
from actual samples of a specific class, it enables to adaptively generate the
fMRI data for the corresponding class via Eq. (6). By doing this, the generated
fMRI signals are more consistent with the actual fMRI signals. Meanwhile, the
generated fMRI is aligned with the downstream disease classification tasks.

Xt(new) _ Xt .

3 Experiment

3.1 Data and Preprocessing

The proposed method is evaluated on various challenging brain disorder clas-
sification tasks on three fMRI datasets, including the public Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) dataset (https://adni.loni.usc.edu/) and
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two private datasets from local hospitals named Huashan-MCI and Zhongshan-
V(I for differentiating MCI and VCI from NC subjects, respectively. There
are 407 subjects (183 MCI vs. 224 NC) on ADNI dataset, 513 subjects (204
MCI vs. 309 NC) on Huashan-MCI dataset and 297 subjects (151 VCI vs. 146
NC) on Zhongshan-VCI dataset. The fMRI data from ADNI, Huashan-MCI and
Zhongshan-VCI were acquired with TR/TE set as 3000/30 ms, 800/37 ms and
2000/24 ms, respectively. All data are preprocessed with the DPARSFA tool-
box [30] following [7]. The mean time series of 90 brain regions in gray matter
are extracted from the preprocessed data using the automated anatomical label-
ing (AAL) atlas [28].

3.2 Competing Methods

To evaluate the effectiveness of the proposed method, various state-of-the-art
competing methods with typical architectures are included for comparison, in-
cluding one VAE-based method (VAE [12]), one GAN-based method (LSTM-
GAN [33]), and four DM-based methods (DDPM [10], LDM |[23], Diffusion-
TS [31], BrainNetDiffusion [32]). Besides, BolT [1] and GCN [18] are used as
classifiers to comprehensively validate the performance of the generated fMRI.

3.3 Experimental Settings

For input Xy € RV*Z, the number of brain regions N is set as 90 and the length
of time series L is set as 128, 480, 208 for ADNI, Huashan-MCI, Zhongshan-VCI
datasets, respectively. In the training process, the batch size is set as 24, the
epoch is set as 1000, the learning rate is set as 0.0001, and the Adam opti-
mizer [13] is used. The number of noise-adding steps T is set as 200 and S, is
linearly sampled from [0.0015, 0.0195]. During the generating process, the up-
date coefficient \ is set as 1 and the FBN guidance interval At is also set as 1,
which are selected by cross-validation in the training dataset. We generate 100
samples for ADNI and Huashan-MCT datasets (50 MCI vs. 50 NC) and 50 for
Zhongshan-VCI (25 VCI vs. 25 NC). To ensure a fair comparison, we perform
5-fold cross-validation and use the same data partitions across all competing
methods. The performance is evaluated using four metrics, including accuracy
(ACCQ), area under the receiver operating characteristic curve (AUC), sensitivity
(SEN) and specificity (SPE).

3.4 Experimental Results

The performance of the proposed method and the competing methods on three
datasets is summarized in Table 1. On the ADNI dataset, the proposed method
achieves accuracies of 71.7% and 74.5% with the BolT and GCN classifiers,
respectively, outperforming the second-best method by 2.2% and 3.2%. For
Huashan-MCI, the accuracies are 70.2% and 70.8% with BoIT and GCN, showing
improvements of 2.8% for both classifiers compared to the second-best method.
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Table 1. The performance of different generation methods

and Zhongshan-VCI.

on ADNI, Huashan-MCI

Dataset Method Classifier| ACC AUC SEN SPE
Original data 66.8+3.8 66.242.5 63.4+2.9 69.6+4.9
VAE[12] 69.5+1.9 70.94+2.3 61.9+4.9 76.0+£6.1
LSTM-GAN|33] 67.8+1.5 66.843.9 60.7+2.3 73.7+3.6
Diffusion-TS[31] BoIT 67.1+£1.8 66.4+1.9 62.4+10.6 71.0£8.2
LDM]23| 67.6+2.3 67.0+£3.7 63.846.2 70.4+8.0
DDPM]|10] 67.3+2.9 66.7+3.1 57.7+£9.0 75.5+5.1
TA-fMRI-GM (proposed) 71.7+£1.5 72.6+£2.6 64.1+£7.8 78.24+6.4
Original data 69.0+4.7 65.2£7.9 53.6+14.5 81.1+9.4

ADNI VAEJ12] 69.6+4.0 66.2+5.9 44.848.7 89.7+3.5
LSTM-GAN]|33] 70.5+1.2 68.0£2.9 58.2410.8 80.2+10.1
Diffusion-TS[31] 69.3+3.1 68.4+£2.9 55.4+14.0 80.2+6.3
BrainNetDiffusion[32] GCN 70.3+6.1 67.948.3 49.6+18.0 86.5+9.0
LDM]23] 69.84+3.4 65.3+£6.4 53.2+16.0 82.6+6.9
DDPM]|10] 71.3£3.9 69.5+5.1 59.3+13.0 80.7+5.6
TA-fMRI-GM (proposed) 74.5+2.7 74.5+4.2 63.5+12.4 83.5+6.7
Original data 65.5£5.5 63.0£7.7 40.9+18.3 81.74+10.0
VAE[12] 67.44+4.8 64.14£8.3 47.24+5.1 80.8+6.1
LSTM-GAN][33] 66.7+2.1 62.2+5.8 49.2+13.8 78.2+10.7
Diffusion-TS[31] BoIT 66.94+5.6 59.54+9.9 43.3+17.5 82.4+8.9
LDM][23] 66.7+2.2 60.24+6.7 43.846.5 81.8+6.5
DDPM]|10] 66.7+3.0 62.6+7.6 50.7+15.6 77.2+11.3

TA-fMRI-GM (proposed)

70.2+6.8 70.7+9.7

57.0£11.1 78.845.5

Original data

64.1£2.7 55.6£4.3

32.0£2.9 85.4+3.8

Huashan-MCI |VAE[12] 66.1+1.3 56.4+4.0 27.5+£9.9 91.6£8.3
LSTM-GAN(33] 67.6+1.9 61.1£5.4 35.3+14.7 89.0+£8.5
Diffusion-T'S[31] 65.9+1.8 58.1£1.0 41.4+9.3 82.1£9.2
BrainNetDiffusion[32] GCN 68.0£2.9 62.0+4.2 45.3+10.5 83.0%£4.1
LDM][23] 66.9+2.7 58.24+8.2 36.9+13.6 86.6£7.6
DDPM][10] 66.9+£1.5 62.3£1.8 40.4+8.3 84.4%6.8
TA-fMRI-GM (proposed) 70.8+3.0 68.8+£3.8 56.1+8.6 80.4+6.2
Original data 63.6+9.3 57.3£10.8 66.9+13.4 60.2£11.0
VAEJ12] 63.6£5.6 60.3£9.2 72.9+6.2 54.0+16.8
LSTM-GAN]|33] 61.94£5.8 57.4£7.1 80.2+7.4 43.1£14.1
Diffusion-TS[31] BoIT 61.6+£3.6 55.8+£2.6 54.3+18.9 69.3+16.4
LDM][23] 61.0£5.6 58.0£7.7 65.6+7.5 56.2+14.5
DDPM][10] 64.3+£5.4 59.7£9.1 63.6+£9.6 65.0£7.3
TA-fMRI-GM (proposed) 66.7+5.4 64.8+£7.0 69.5+10.0 63.7£12.2
Original data 64.0+4.4 62.1£6.3 59.6+13.5 68.4+14.2

Zhongshan-VCI|VAE[12] 66.0+£3.7 66.2+5.5 64.9+8.9 67.1£6.5
LSTM-GAN]I33] 65.6+4.3 60.8+£6.7 67.4+16.7 63.84+19.3
Diffusion-T'S[31] 65.0£3.4 65.8+4.9 62.2+8.9 67.8£12.9
BrainNetDiffusion[32] GCN 66.3£3.8 63.2£7.6 68.9+12.7 63.7£14.7
LDM][23] 64.0£4.1 61.6+6.2 60.9+18.8 67.1£17.3
DDPM][10] 67.4+£7.2 66.6£12.9 68.2+7.1 66.4£20.5

TA-fMRI-GM (proposed)

70.0+3.7 67.6£5.8

74.248.7 65.1+6.1
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Fig. 2. Performance of the proposed method with different numbers of (a)(b) FBN
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Fig. 3. Illustrations of the FBNs derived from the generated fMRI without prior FBN
guidance, as well as those generated under different FBN guidance intervals At, and
the prior FBN from the actual fMRI on the Huashan-MCI dataset.

Likewise, on Zhongshan-VCI, the proposed method achieves accuracies of 66.7%
and 70.0% with BoIT and GCN, outperforming the second-best method by 2.4%
and 2.6%. Moreover, the proposed method surpasses the base model DDPM by
3.5% and 3.9% on the Huashan-MCI dataset, and similar improvements are
observed on the other two datasets. These results consistently indicate the ef-
fectiveness and reliability of the proposed method in generating fMRI data,
demonstrating that it can be well aligned with the brain disorder classification
tasks.

3.5 Ablation Study

An ablation study is conducted to evaluate the effect of different FBN guidance
intervals At and update coefficients A during incorporating prior FBN guidance.
As shown in Fig. 2(a) and (b), the performance of the proposed model improves
as At decreases. This suggests that more frequent integration and interaction
between the denoising process and the guidance of prior FBN during the gen-
eration process can improve the generated fMRI towards the actual fMRI data.
Besides, as seen in Fig. 2(c) and (d), the performance of the proposed model
initially increases and then decreases as A\ varies from 107* to 102, with the
best performance when A is 1. These results imply that adding FBN guidance is
beneficial in a wide range of A\. At the same time, excessively low A may intro-
duce insufficient guidance and excessively high A\ may affect the diversity of the
generated fMRI, both of which ultimately lead to degraded performance.
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4 Visualization and Conclusion

As shown in Fig. 3, the FBNs generated with FBN guidance exhibit connectiv-
ity characteristics more similar to the actual FBN compared to those generated
without guidance. Besides, as the FBN guidance interval At decreases, the re-
sulting FBNs become more closely aligned with the actual FBN. These results
further emphasize the importance of incorporating prior FBN guidance to en-
hance the quality of the generated fMRI data and suggest that more frequent
guidance can improve the generated fMRI towards the actual {MRI.

In conclusion, our paper proposes a task-aligned generation method to gen-
erate fMRI time series with prior FBN guidance, which is more flexible and
efficient to generate fMRI that conforms to the actual fMRI and is well aligned
to the brain disorder diagnosis tasks. Experimental results on three datasets
demonstrate the effectiveness of the proposed method.
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