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Abstract. Multiple instance learning (MIL) has proven e�ective in clas-
sifying whole slide images (WSIs), owing to its weakly supervised learn-
ing framework. However, existing MIL methods still face challenges, par-
ticularly over-�tting due to small sample sizes or limited WSIs (bags).
Pseudo-bags enhance MIL's classi�cation performance by increasing the
number of training bags. However, these methods struggle with noisy
labels, as positive patches often occupy small portions of tissue, and
pseudo-bags are typically generated by random splitting. Additionally,
they face di�culties with non-discriminative instance embeddings due
to the lack of domain-speci�c feature extractors. To address these limi-
tations, we propose Phenotype Clustering Reinforced Multiple Instance
Learning (PCR-MIL), a novel MIL framework that integrates clustering-
based pseudo-bags to improve MIL's noise robustness and the discrim-
inative power of instance embeddings. PCR-MIL introduces two key
innovations: (i) Phenotype Clustering-based Feature Selection (PCFS)
selects relevant instance embeddings for prediction. It clusters instances
into phenotype-speci�c groups, assigns positive instances to each pseudo-
bag, and then uses Grad-CAM to select the most relevant positive em-
beddings. This approach mitigates noisy label challenges and enhances
MIL's robustness to noise; (ii) Reinforced Feature Extractor (RFE) uses
reinforcement learning to train an extractor based on selected clean
pseudo-bags instead of noisy samples. This approach improves the dis-
criminative power of extracted instance embeddings and enhances the
feature representation capabilities of MIL. Experimental results on the
publicly available BRACS and CRC-DX datasets demonstrate that PCR-
MIL outperforms state-of-the-art methods. The code is available at:
https://github.com/JingjiaoLou/PCR-MIL.
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Fig. 1. (a) Traditional MIL takes a WSI bag as input. (b) DTFD-MIL mitigates the
over�tting problem caused by a limited number of bags by introducing pseudo-bags. (c)
Our proposed PCR-MIL not only addresses the over�tting problem but also enhances
MIL's robustness to noise and improves its feature representation capabilities.

1 Introduction

Although multiple instance learning (MIL) has demonstrated strong performance
in whole slide image (WSI) classi�cation [4,11,7,5,15,13,8], it still faces the over-
�tting problem, where neural network models tend to converge to local minima
during optimization [14,16]. The lack of large-scale datasets is one of the most
signi�cant factors contributing to this over�tting issue. Despite the enormous
size of WSIs, which range from 100 million pixels to 10 gigapixels, each WSI
is treated as a single bag under the MIL framework. Pseudo-bags [1,16] o�er a
potential solution to mitigate the limited number of WSIs by randomly splitting
the instances (patches) of a bag (slide) into several smaller bags (pseudo-bags).

However, two challenges prevent MIL with pseudo-bags from handling the
over-�tting problem. i) Pseudo-bags are a�ected by noisy labels because
positive patches occupy only small portions of the tissue, and pseudo-
bags are generated through random splitting. (Fig. 2 (a)). In many
histopathology slides, the positive regions corresponding to diseased areas occupy
only small portions of the tissue, resulting in a low ratio of positive instances
within a slide. As a result, noisy labels emerge when positive instances are not
properly split into pseudo-bags. ii) Embedding-based MIL su�ers from
non-discriminative features due to the absence of a domain-speci�c
feature extractor. (Fig. 2 (b)). The embedding-space paradigm has become
the primary method in MIL research, heavily relying on the use of an extractor
to embed each instance into low-dimensional features, which are then combined
to obtain a bag representation. Existing approaches typically use pre-trained
models trained on large datasets, such as ImageNet [2], which lack domain-
speci�c knowledge. Although domain-speci�c extractors are expected to perform
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(a) Challenge 1: Pseudo-bags suffer from noisy labels because positive patches occupy 

small portions of tissue, and pseudo-bags are generated through random splitting.

(b) Challenge 2: Embedding-based MIL suffers from non-discriminative features due 

to the lack of a domain-specific feature extractor.
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Fig. 2. MIL based on pseudo-bags faces two main challenges for WSI classi�cation:
(a) Pseudo-bags su�er from noisy labels because positive patches occupy only small
portions of the tissue, and pseudo-bags are generated through random splitting; (b)
Embedding-based MIL struggles with non-discriminative features due to the absence
of a domain-speci�c feature extractor.

better, they are hindered by the lack of large-scale datasets and high-quality
annotations.

To address the challenges, two novel solutions are proposed (Fig. 3). i)
Our proposed phenotype clustering-based feature selection (PCFS)
method addresses noisy labels by splitting positive patches into pseudo-
bags and selecting the relevant positive features (Fig. 3 (a)). PCFS �rst
employs patches from di�erent phenotype clusters to construct pseudo-bags,
which contain both positive and negative instances. Then, PCFS selects the
instance embeddings with the maximum probability from each pseudo-bag by
applying the Grad-based Class Activation Map (Grad-CAM) [12] to identify the
signal strengths of instances being positive. This approach mitigates the chal-
lenges of noisy labels and enhances the robustness of MIL to noise. ii) Our pro-
posed Reinforced Feature Extractor (RFE) tackles non-discriminative
features by training an optimized extractor on noise-reduced pseudo-
bags (Fig. 3 (b)). RFE selects pseudo-bags with clean (correct) labels to pre-
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noisy labels by splitting positive patches into pseudo-bags and selecting positive features.

(b) Solution 2: Our proposed reinforced feature extractor (RFE) addresses non-discriminative 

features by training an optimized extractor on reduced-noise pseudo-bags.
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Fig. 3. Our proposed (a) PCFS and (b) RFE address the challenges by selecting the
relevant positive embeddings based on phenotype-speci�c groups and selectively using
noisy-reduced pseudo-bags to train a e�ective domain-speci�c extractor.

train an extractor by utilizing a policy network from reinforcement learning (RL)
[3,9] as a selector to decide whether to retain or remove a pseudo-bag for train-
ing. This approach enhances the discriminative power of the extracted instance
embeddings and improves MIL's feature representation capabilities.

In this study, we propose a novel double-tier MIL framework speci�cally
designed for WSI classi�cation, which utilizes pseudo-bags for augmentation and
a reinforced feature extractor to generate discriminative instance embeddings.
The main contributions of this study are:

(1) For the �rst time, we use phenotype clustering to assign positive instances
to each pseudo-bag and further select instance embeddings with strong positive
signal strength. This approach mitigates noisy labels and enhances MIL's ro-
bustness to noise.
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Fig. 4. An overview of our proposed PCR-MIL. PCR-MIL comprises two primary
components: (a) PCFS and (b) RFE. PCFS selects representative instance embeddings
for �nal prediction (the 2nd MIL). RFE uses RL to train an extractor to initially extract
discriminative instance embeddings (the 1st MIL).

(2) For the �rst time, we integrate RL into MIL to identify clean pseudo-bags
for pre-training a domain-speci�c feature extractor. This improves the discrimi-
native power of instance embeddings and enhances MIL's feature representation
capabilities.

(3) Extensive experimental results on two publicly available datasets demon-
strate the superior performance of the proposed method compared to state-of-
the-art techniques.

2 Methodology

The PCR-MIL consists of two main components (Fig. 4): (a) PCFS and (b)
RFE. Speci�cally, PCFS selects representative positive instance embeddings for
the �nal prediction, while RFE employs a policy network of RL to train an
extractor that initially extracts discriminative instance embeddings.

2.1 PCFS for noise-robust pseudo-bag augmenting and embedding
selecting

The proposed PCFS uses patches from di�erent phenotype clusters to construct
pseudo-bags and selects instance embeddings with a strong positive signal for
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prediction (Fig. 4(a)). Given multiple WSIs from a patient or a single WSI,
PCFS divides them into thousands of small patches and applies color normaliza-
tion using the Macenko method. Speci�cally, a ResNet50 model pre-trained on
ImageNet is used to convert these patches into one-dimensional feature vectors.
K-means clustering is then applied to divide these patches into several di�erent
clusters based on their corresponding feature vectors. PCFS randomly selects a
patch from each cluster to form a pseudo-bag.

PCFS applies the Grad-CAM mechanism to the �rst MIL to directly infer
the signal strength of an instance belonging to a certain class. It then selects the
representative instance embeddings based on the signal strength for instance k
being class c (where c=0 for negative and c=1 for positive).

Summarized advantages: This approach mitigates the challenges posed by
noisy labels and enhances the robustness of MIL to noise.

2.2 RFE for extracting domain-discriminative instance embeddings

The RFE enhances the representation of MIL by training a domain-speci�c ex-
tractor based on noise-reduced pseudo-bags (Fig. 4 (b)). RFE consists of a clas-
si�er and a selector. The classi�er is built on an attention-based MIL model
[5]. It takes a pseudo-bag as input and predicts whether the bag belongs to the
positive category. The best pre-trained attention MIL model, excluding the top
layers, is later used to extract discriminative instance embeddings.

The selector employs an agent relying on a policy network of reinforcement
learning to select pseudo-bags. The state of each time step t is represented as
a continuous real-valued vector to meet the Markov decision process. Features
extracted by the attention-based MIL are used as states. Each state comprises
two types of information: a feature vector of the current bag and the average
feature vector of total bags. We de�ne an action ai ∈ (0, 1) to determine whether
to remove or retain the pseudo-bag. Rewards are derived from the classi�er to
signify the e�ectiveness of the selector:

R(τ) =
1

M

M∑
t=1

acct − µ (1)

in which τ represents an episode with a sequence of states s and actions a, M
represents the total number of pseudo-bags, acc refers to the prediction accuracy
used to evaluate the classi�er's performance, and µ is a constant.

The policy network optimizes its parameters by maximizing the expected
reward. The derivative of the expectation value of R(τ) is de�ned as:

∇R̄θ =
1

N

∑N
n=1R(τn)∇logP (τn|θ) (2)

where N represents the total number of episodes, P (τ |θ) represents the predic-
tion probability, and θ represents the parameters of the policy network.
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Table 1. The comparison results on two datasets show that our PCR-MIL outperforms
the state-of-the-art methods. The best values are highlighted in bold.

Methods
BRACS CRC-DX

Accuracy AUC Accuracy AUC

AMIL [5] 73.33 82.89 74.47 73.47
MIL-VT [15] 93.33 98.22 73.40 82.51
TransMIL [13] 80.00 82.89 76.06 75.52
DSMIL [8] 100.00 100.00 79.79 77.56
DTFD-MIL [16] 86.67 93.78 73.40 79.22
PCR-MIL (ours) 100.00100.00100.00 100.00100.00100.00 84.5784.5784.57 84.1284.1284.12

Subsequently, the gradient of R̄θ can be further expanded to:

∇R̄θ =
1

N

∑N
n=1

∑T
t=1R(τn)∇logp(at|st, θ) (3)

Summarized advantages: This approach enhances the discriminative power
of the extracted instance embeddings and improves the feature representation
capabilities of MIL.

3 Experiment

3.1 Datasets Description

BRACS The BRACS [10] is a breast cancer dataset, which comprises 4391 re-
gions of interest (ROIs) extracted from 325 hematoxylin and eosin (H&E) breast
carcinoma WSIs. In this study, we employ the BRACS dataset for binary classi-
�cation, di�erentiating between invasive breast cancer and a combined category
of non-invasive cases.

CRC-DX The CRC-DX [6] is a colorectal dataset. It divides 360 patients into
training and testing datasets, comprising 39 MSI and 221 MSS, and 26 MSI and
74 MSS, respectively. It comprises 193,312 image patches derived from histolog-
ical images of CRC patients in the Cancer Genome Atlas (TCGA) cohort.

3.2 Implementation Details

Our code was implemented using TensorFlow and run on the Ubuntu 20.04.4
LTS operating system with Nvidia GeForce RTX 3090 GPUs (24GB). To ensure
a fair comparison, the proposed method and other methods are constructed
using identical architecture, mini-batch size, and parameter initialization. Each
method performed with consistent data splitting.
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Table 2. Ablation studies demonstrate the e�ectiveness of each key component of our
proposed PCR-MIL method.

Number Baseline PCFS RFE
BRACS CRC-DX

Accuracy AUC Accuracy AUC

No. 1 ✓ 86.67 93.78 73.40 79.22
No. 2 ✓ ✓ 93.33 95.11 75.53 78.69
No. 3 ✓ ✓ 100.00 100.00 74.47 80.19
No. 4 ✓ ✓ ✓ 100.00 100.00 84.57 84.12

3.3 Results and Discussion

Comparison Study The comparison study shows that our PCR-MIL achieves
highly competitive performance. Table 1 presents the outcomes of various meth-
ods, including attention-based MIL [5], MIL-VT [15], TransMIL [13], DTFDMIL
[8] and our proposed PCR-MIL. The performance metrics include Accuracy (%)
and AUC (%), as summarized in Table 1. On the BRACS dataset, PCR-MIL
achieves perfect scores in both Accuracy (100.00%) and AUC (100.00%), match-
ing the performance of DSMIL while surpassing other state-of-ther-art methods.
For instance, MIL-VT attains an AUC of 98.22%, whereas AMIL and TransMIL
yield lower results. For the CRC-DX dataset, PCR-MIL demonstrates superior
generalization, achieving an Accuracy of 84.57% and AUC of 84.12%, outper-
forming all competing methods. The second-best performer, DSMIL, attains an
Accuracy of 79.79% and AUC of 77.56%, followed by TransMIL (76.06% Accu-
racy and 75.52% AUC). Notably, PCR-MIL improves Accuracy by 4.78 percent-
age points and AUC by 6.56 percentage points over DSMIL on CRC-DX.

Ablation Study As demonstrated in Table 2, we systematically evaluate the
contributions of key components in our proposed PCR-MIL framework by con-
ducting ablation studies on both BRACS and CRC-DX datasets. The baseline
model (DTFD-MIL) achieves an Accuracy of 86.67% and AUC of 93.78% on
BRACS, while yielding 73.40% Accuracy and 79.22% AUC on CRC-DX. The
results demonstrate that incorporating the PCFS and RFE modules improve
models' performance, respectively. The integration of both components achieves
state-of-the-art results.

4 Conclusion

In this study, we propose a novel double-tier MIL network, named PCR-MIL,
for whole slide image classi�cation. The PCFS innovatively mitigates noise in-
terference by constructing phenotype pseudo-bags and selecting the most repre-
sentative positive instance embeddings, thereby improving the noise robustness
of MIL. The novel RFE trains an e�ective domain-speci�c feature extractor by
autonomously selecting clean pseudo-bags for training, thereby enhancing the
feature representation of MIL. Extensive experimental results demonstrate the
e�ectiveness of both our proposed PCR-MIL method and its individual compo-
nents.
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