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Abstract. Ultrasound image segmentation plays a critical role in medical-
assisted diagnosis but suffers from inherent limitations, such as high
noise, artifacts, and morphological diversity. Existing methods strug-
gle to generalize with small-sample data due to feature contradictions
from varying acquisition angles, limiting multi-center clinical use. To ad-
dress these issues, we propose a dual prior-guided two-stage segmenta-
tion framework. In the first stage, the prior classification of small-sample
data guides domain adaptation pretraining on large-scale datasets, em-
ploying dynamic class balancing to mitigate data distribution bias. The
second stage features a multi-level feature fusion architecture with three
core modules: First, we design a Multi-branch Convolutional Parallel
Attention (MCPA) module that extracts contextual features via par-
allel dual attention to adaptively select multi-scale features. Next, we
propose a Multi-scale Fusion Dilated Convolution (MFDC) module that
enhances the encoder’s capability to capture lesion boundaries across dif-
ferent receptive fields through hierarchical dilated convolutions. Finally,
we introduce an Enhanced Feature Decoding module (EFD) in the de-
coder, embedding a cross-layer compensation mechanism using shallow
high-resolution features to recover spatial details lost. Furthermore, we
propose an interactive dual-stream architecture that bridges prior-guided
classification and segmentation tasks, where complementary features are
fused through cross-task attention to optimize holistic semantic consis-
tency and robustness. Experiments on the public dataset demonstrate
our method’s superiority over mainstream approaches. Ablation studies
validate the effectiveness of our method, providing a solution for high-
precision, high-availability small-sample ultrasound image segmentation.
Code is on Github: https://github.com/notchXie/DPGS-Net.
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1 Introduction

Ultrasound imaging, known for its non-invasive, real-time, and cost-effective na-
ture, is crucial for early screening, diagnosis, and treatment planning in health-
care [5,16]. Unlike CT or MRI, it does not use ionizing radiation and is portable,
making it widely used in clinical settings. Early ultrasound segmentation relied
on traditional methods like edge detection and manual annotations, which were
slow, labor-intensive, and dependent on physician expertise. This often led to
inconsistent results and limited scalability across different centers. As a result,
there was a push for improved solutions. While deep learning has revolutionized
medical image segmentation, ultrasound segmentation still faces several chal-
lenges: noise and artifacts caused by the equipment, tissue variability due to
patient differences and imaging conditions, and the limited availability of an-
notated data because of privacy concerns. These issues, especially the scarcity
of annotated samples, hinder model training and reduce segmentation accuracy
and clinical reliability.

The encoder-decoder architecture, exemplified by U-Net [19], has become
a cornerstone of medical segmentation by fusing multi-scale features through
skip connections [1]. U-Net++ [29] enhanced skip connection flexibility, while
attention mechanisms [17] improved target region focus. The DeepLab series [5]
advanced multi-scale context modeling via dilated convolutions and spatial pyra-
mid pooling. Transformer-based models, such as TransUNet [4], SETR [28], and
Swin-Unet [3], leveraged self-attention for long-range dependencies, and UC-
TransNet [21] refined skip connection channel selection. However, feature contra-
dictions from acquisition variations, complex backgrounds, and lesion diversity
challenge small-sample generalization and cross-domain adaptability, as U-Net
variants struggle with noise interference, as shown in Fig. 1. To address these
issues, researchers have explored multi-task learning [14, 22], few-shot meta-
learning [12], domain adaptation [8, 20], unsupervised adaptation [27], prior
shape mapping [26], and pretraining-fine-tuning paradigms [6]. Despite these

Fig. 1. The left image shows a U-Net [19] segmentation using extracted contrast fea-
tures, while the right image reveals notable errors from U-Net due to feature contra-
dictions in the ultrasound, despite using the same features.
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efforts, no single method fully addresses ultrasound segmentation’s complexity,
underscoring the need for an integrated framework.

Thus, we proposes a dual prior-guided cross-domain adaptive framework for
small-sample ultrasound image segmentation. A prior-classification-guided do-
main adaptation pretraining strategy addresses feature contradictions and data
scarcity by leveraging large-sample datasets of the same category. A multi-level
feature fusion architecture integrates MCPA, MFDC, and EFD modules to en-
hance feature extraction for complex backgrounds and lesion boundaries. A dual-
stream feature interaction mechanism jointly optimizes prior classification and
segmentation tasks, improving semantic consistency and cross-task adaptability.
Experiments on the DDTI dataset demonstrate superior performance, with ab-
lation studies validating each module’s effectiveness. The contributions of this
paper are summarized as follows:

– A general domain adaptation pretraining strategy is proposed, guided by
prior classification knowledge and leveraging large-sample datasets of the
same category to address feature contradictions and domain adaptation chal-
lenges in small-sample scenarios.

– A multi-level feature fusion segmentation network is designed, integrating
MCPA, MFDC, and EFD modules to significantly enhance feature extraction
and segmentation accuracy.

– A dual-stream interaction mechanism is constructed for prior classification
and segmentation tasks, adaptively guiding the segmentation network through
cross-task feature fusion to optimize robustness and generalization.

2 Method

We propose a Dual Prior-Guided Two-Stage Segmentation Framework (DPGS-
Net). As shown in Fig. 2, Stage I employs domain adaptation pretraining, lever-
aging prior classification knowledge from a large-sample dataset of the same
category. Stage II integrates three core modules into U-shaped segmentation net-
work for multi-level feature fusion, enhanced by a classification network trained
with prior knowledge, forming a multi-task dual-stream feature interaction for
secondary guidance. Details follow below.

2.1 Prior Classification-Guided Domain Adaptation Pretraining

As shown in Fig. 2, let the source domain (large-sample dataset) be Ds =
{(xs

i , y
s
i )}

Ns
i=1 and the target domain (small-sample dataset) be Dt = {(xt

j , y
t
j)}

Nt
j=1,

where Nt ≪ Ns. To address data scarcity and class imbalance in the target do-
main, we construct a prior classification task using surface positional prior infor-
mation. Spatial distribution features Fpos = Epos(x

t
j) are extracted to generate

class labels Ct = {ck}Kk=1, ensuring each class covers significant spatial patterns.
A dynamic class-balancing strategy is employed to build the test set Dt

test: for
each class ck, nk = αk ·Nt samples are randomly sampled, with

∑K
k=1 nk = N ′

t
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and αk dynamically adjusted based on class distribution entropy, ensuring minor-
ity class coverage exceeds a threshold τ . Feature consistency validation removes
samples with significant divergence from the source domain, yielding a balanced
and representative Dt

test.
After obtaining Dt

test, we perform domain adaptation pretraining. First, a
base segmentation model Ms is pretrained on the source domain dataset Ds. The
pretrained model is fine-tuned on Dt

test by minimizing Lseg. Early stopping pre-
vents overfitting, and performance is recorded after each fine-tuning session. Mul-
tiple fine-tuning experiments are conducted, and the best-performing model on
Dt

test is selected as the domain-adapted pretrained model Madapt, which adapts
to the target domain distribution and provides a feature extraction foundation
for Stage II.

2.2 Multi-Level Feature Fusion Segmentation Network

Multi-branch Convolutional Parallel Attention Module As shown in
Fig. 4, the MCPA module adaptively extracts shallow features and fuses cross-
task information via multi-scale convolutions and a dual-attention mechanism
[13,23]. The input feature Fin ∈ RH×W×C is processed through 1×1, 5×5, and
9× 9 convolutions to extract multi-scale features F1, F5, and F9. These features
are used to compute channel-attention and spatial-attention features:

FCA =
∑

k∈{1,5,9}

(Fk ⊗ σ(MLP(GAP(Fk)))) , (1)

FSA =
∑

k∈{1,5,9}

(Fk ⊗ σ(Conv3×3(Concat(AvgPool(Fk),MaxPool(Fk))))) , (2)

where GAP is global average pooling, MLP is a multi-layer perceptron, and σ
is the Sigmoid function. The concatenated feature FA = Concat(FCA, FSA) is
further processed through 3×3, 5×5, and 7×7 depthwise separable convolutions
[7] to extract multi-scale features FDW3, FDW5, and FDW7. The final output is
obtained by fusing these features: F̂ = FDW3 + FDW5 + FDW7.

Multi-Scale Fusion Dilated Convolution Module The MFDC module en-
hances blurred boundary sensitivity and multi-scale context capture via hierar-
chical convolutions. As shown in Fig. 3, the input feature Fin ∈ RH×W×C is
processed as:F1 =

∑
k∈{3,5,7} Convk×k(Fin), F2 =

∑
r∈{1,2,3} DilatedConvr(F1),

F3 = Conv1×1(Concat(F1, F2)), where DilatedConvr denotes dilated convolution
[25] with rate r. The fused features F1 and F2 are concatenated, compressed, and
summed via residual connections to generate the final output:F̂ = F1+F2+F3.

Enhanced Feature Decoding Module To mitigate spatial detail loss in de-
coding, the EFD module employs lightweight convolutions and residual connec-
tions for improved feature reconstruction. As shown in Fig. 3, the input feature
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Fig. 2. DPGS-Net: stage I is the domain adaptation pretraining strategy guided by
prior classification knowledge. stage II is the multi-task dual-stream feature interaction
mechanism. The multi-level feature fusion segmentation network and Ct are applied in
both stages, while Madapt would be loaded to the segmentation network of stage II.

Fig. 3. The backbone network used for target domain segmentation in Stage II consists
of the multi-level feature fusion segmentation network and the multi-task dual-stream
feature interaction mechanism.
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Fig. 4. Multi-branch Convolutional Parallel Attention Module. MCAM: Multi-branch
Channel Attention Mechanism; MSAM: Multi-branch Spatial Attention Mechanism.

Fin ∈ RH×W×C undergoes a series of 3×3 convolutions and depthwise separable
convolutions, enhanced by ReLU activations, and is fused with initial features
via residual connections to generate the decoded output:

F̂ = ReLU (Fin + Conv3×3 (DWConv (Conv3×3 (Fin)))) , (3)

2.3 Multi-Task Dual-Stream Feature Interaction Mechanism

Dual-Task Parallel Training To address feature contradictions via prior
classification guidance, we propose a multi-task dual-stream feature interaction
mechanism, optimizing both classification and segmentation tasks with prior fea-
ture guidance. As shown in Fig. 3, a pretrained ResNet101 network [11] is used for
prior classification, where labels Ct are generated using surface positional infor-
mation. High-dimensional features Fcls ∈ RH×W×C from the penultimate layer
of ResNet101, which match the spatial dimensions of Fbottleneck ∈ RH×W×C

from the segmentation network, are fed into the MCPA module for adaptive
cross-task feature fusion Ffused = MCPA(Concat(Fbottleneck, Fcls)), where Ffused
guides the segmentation reconstruction in the decoder.

Loss Function The total loss Ltotal combines segmentation loss Lseg and clas-
sification loss Lcls with weights λ1 and λ2:

Ltotal = λ1Lseg + λ2LCE (4)

where the segmentation loss is: Lseg = µ1×LBCE+µ2×Ldice with hyperparameters:µ1 =
0.4, µ2 = 0.6, λ1 = 0.5, λ2 = 0.5. Lseg is the weighted sum of binary cross-entropy
and Dice losses, and LCE is the cross-entropy loss for classification.

3 Experiments

3.1 Datasets and Implementation Details

We utilized the DDTI dataset [18] as the small-sample target domain and the
TN3K dataset [9] as the large-sample source domain. DDTI, split into 511 train-
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ing, 63 validation, and 63 test images, mimics small-sample feature contradic-
tions due to its size and bias. TN3K, with 2,879 images for training/validation
and 614 for testing, offers broader device and lesion variety.

Experiments ran on a NVIDIA RTX 4090 GPU, with input images resized to
256*256, using a batch size of 12 over 50 epochs. The Adam optimizer (1=0.9,
2=0.999) was applied, starting with a learning rate of 1e-3 for pretraining on
TN3K, then lowered to 5e-4 for domain adaptation fine-tuning with dynamic
class balancing on DDTI, and finally adjusted to 2e-4 for DDTI training.

3.2 Experimental Results

Comparative Experiments We conducted comparison experiments with main-
stream models and state-of-the-art methods, including U-Net [19], U-Net++
[29], TransUNet [4], Swin-Unet [3], FCN [15], DeepLabv3+ [5], TRFE+ [10],
BPAT-UNet [2], DAC-Net [24], as well as our baseline model (Ours) and the
model with domain adaptation pretraining (Ours+DAP). Experiments were con-
ducted on the DDTI test set, with training details restored as described in the
original papers, and some parameters set to match. Model performance was
comprehensively evaluated using five metrics: Dice coefficient (Dice), Intersec-
tion over Union (IoU), Precision, Recall, and Mean Pixel Accuracy (MPA). The
experimental results are shown in Table 1.

The experimental results show that our method (Ours+DAP) outperforms all
comparison methods on all evaluation metrics. The model with domain adapta-
tion pretraining achieved significant advantages across all metrics. For example,
in terms of Dice coefficient, our method achieved 86.52%, which is 4.57 percent-
age points higher than DeepLabv3+ and 6.49 percentage points higher than the
state-of-the-art method TRFE+. Our method also demonstrated significantly
better performance in Recall and other metrics, validating its high coverage and
low false-positive rate even in the presence of complex background interference.
Even without domain adaptation pretraining, our model (Ours) still outperforms

Table 1. Performance comparison of our method with mainstream models and state-
of-the-art methods on the DDTI dataset. DAP: Domain Adaptation Pretraining.

Methods Dice (%) IoU (%) Precision (%) Recall (%) MPA (%)
U-Net [19] 71.66 59.09 67.25 86.12 91.97
U-Net++ [29] 78.61 66.79 83.16 78.53 94.41
TransUNet [4] 68.07 54.13 67.82 79.29 90.89
Swin-Unet [3] 66.41 51.81 65.85 78.18 90.23
FCN [15] 68.94 55.89 74.44 71.63 92.45
DeepLabv3+ [5] 81.95 71.39 87.61 81.59 95.05
TRFE+ [10] 80.03 69.85 82.44 83.71 94.41
BPAT-UNet [2] 78.93 67.02 84.11 78.82 94.50
DAC-Net [24] 68.53 54.73 82.78 84.56 89.45
Ours 82.31 72.07 83.71 85.45 95.11
Ours+DAP 86.52 77.63 89.76 86.30 96.09
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other models in Dice, IoU, and MPA, thanks to the multi-level feature fusion
architecture and the multi-task dual-stream feature interaction mechanism.

Fig. 5. A qualitative comparison of segmentation results produced by our method and
other methods on the DDTI dataset.

3.3 Ablation Study

Table 2. Ablation study results. SN: Multi-Level Feature Fusion Segmentation Net-
work; MT: Multi-Task Dual-Stream Feature Interaction Mechanism; PT: General Pre-
training; DAP: Domain Adaptation Pretraining.

Configuration Dice (%) IoU (%) Precision (%) Recall (%) MPA (%)
SN 79.48 68.87 86.90 76.76 94.84
SN + MT 82.31 72.07 83.71 85.45 95.11
SN + PT 83.93 73.91 88.68 82.46 95.48
SN + MT + PT 84.46 74.84 90.81 82.35 95.84
SN + MT + DAP 86.52 77.63 89.76 86.30 96.09

To further validate the effectiveness of each module in our framework, we
designed ablation experiments by removing key methods and modules and eval-
uating their performance. The ablation results are shown in Table 2. Each pro-
posed method contributes to the optimization of the baseline model, with domain
adaptation pretraining providing the most significant improvement over general
pretraining. These results comprehensively validate the effectiveness of our pro-
posed methods and modules, demonstrating that the designs for multi-task fea-
ture interaction, multi-scale feature fusion, and domain adaptation pretraining
effectively enhance model performance.
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4 Conclusion

This paper proposes a dual prior-guided two-stage segmentation framework that
combines domain adaptation pretraining strategies with a multi-level feature fu-
sion architecture and a multi-task dual-stream feature interaction mechanism.
This framework addresses feature contradictions, insufficient cross-domain gener-
alization, and data distribution bias in small-sample datasets ultrasound image
segmentation tasks. Comparative experiments show that our method signifi-
cantly outperforms current mainstream methods, and ablation studies further
validate the effectiveness and generalizability of our approach. The proposed
methods and strategies are also applicable to other models, providing a univer-
sal and effective solution for multi-center clinical deployment with significant
clinical translation potential.
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