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Abstract. Digital training simulators play a growing role in orthope-
dic surgery, offering realistic, standardized, and risk-free learning envi-
ronments without the need for constant expert supervision. To enable
simulators with realistic tactile feedback and haptic sensations, accurate
tracking of surgical tools and anatomical structures in real-time is re-
quired. However, existing object tracking solutions are often expensive,
difficult to integrate into training workflows, or lack robustness. To ad-
dress these limitations, we propose a novel visual-inertial 6D object pose
tracking system for orthopedic surgical training. Our approach features
a custom fiducial object that combines multiple ArUco markers with an
Inertial Measurement Unit, a dual-camera setup to improve occlusion
robustness, and a sensor fusion algorithm that integrates high-frequency
IMU data with vision-based tracking while ensuring precise coordinate
and time synchronization. In our evaluation, we achieve a fiducial ob-
ject pose accuracy of 0.9 mm/0.5° and extract drill hole metrics in a
mock surgical procedure with average position, angle, and length errors
of 1.7 mm, 2.0°, and 1.0 mm, respectively, while demonstrating low occlu-
sion rates. Our cost-effective and easily integrated solution meets clinical
training requirements and marks a step towards scalable and widely ac-
cessible digital orthopedic simulators. The tracking code is available at
https://github.com/MountainCoot/fusionpose.
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1 Introduction

Surgical training increasingly relies on digital simulation methods, which pro-
vide realistic, standardized, and risk-free training environments with balanced
case mix and reduced need for expert supervision [17, 24]. In orthopedic surgery,
digital simulators with tactile feedback and haptic sensations have received sig-
nificant attention [5, 31, 21, 20], as they support the development of psychomotor
skills essential in tasks such as bone drilling, screw insertion, and fracture fixa-
tion [24, 23, 10]. A fundamental cornerstone of these simulators is the tracking of
surgical tools and anatomical structures, enabling realistic rendering with real-
time guidance and overlays using Augmented Reality (AR) [31], skill assessment
based on tool movements [14, 21], and even complete digitization of surgical
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procedures via digital twins [26, 13]. Currently, orthopedic simulators primarily
utilize commercially available Optical Tracking Systems (OTSs) and electro-
magnetic tracking systems [31, 21, 15]. They allow for straightforward tracking
of position and orientation, also referred to as the 6D pose, with sub-millimeter
accuracy at high frame rates using optical fiducial markers and electromagnetic
sensors, respectively [27]. However, the integration of commercial tracking sys-
tems into digital simulators is held back by several factors: In addition to their
high cost, OTSs require an unobstructed view of the markers, making them
susceptible to signal losses, while electromagnetic tracking systems are prone
to interference from metallic objects [27, 17]. Therefore, to facilitate scale-up of
digital orthopedic training, there is a need for cost-effective tracking solutions
that offer high robustness while maintaining ease of integration, accuracy, and
acquisition rates comparable to commercial systems [24].

Recently, computer-vision-based methods using RGB cameras have gained
popularity for affordable object tracking. Several authors propose markerless
pose estimation in surgical contexts with convolutional neural networks [4, 12].
However, limited accuracy, high computational cost, and poor generalization
hinder its widespread adoption. In contrast, marker-based motion tracking with
RGB cameras largely circumvents these issues by leveraging fiducial markers
with known size, geometry, and appearance. A notable example intended for
drawing applications in AR is the DodecaPen stylus [32], which achieves accurate
6D pose estimation using ArUco markers. The same principle has been extended
to the surgical domain [28], with some works incorporating multi-camera setups
to reduce occlusions [29, 30, 6]. Nevertheless, beyond these proof-of-concept stud-
ies for general surgery applications, no setup for orthopedic training that enables
straightforward multi-object tracking has been proposed. Moreover, acquisition
rates of camera-based methods are significantly below commercial tracking sys-
tems and might be insufficient to capture fast movements.

A cost-effective option for motion tracking at high rates are Inertial Mea-
surement Units (IMUs), sensors that measure acceleration and angular velocity
without suffering from any form of interference. While they cannot be directly
used for pose estimation due to signal drift, they enable the extraction of other
motion metrics such as acceleration and jerk for skill evaluation [21]. In addition,
IMUs are valuable when fused with additional sensors, with a notable example by
Enayati et al. [8], who use an IMU in combination with an OTS to upsample 6D
pose estimates and bridge short line-of-sight interruptions. However, their work
does not address the issue of coordinate calibration and time synchronization
between the IMU and the OTS, which is crucial for accurate pose estimation.

In summary, neither existing commercial tracking systems nor camera or
IMU-based alternatives fully address the requirements of scalability, accuracy,
and robustness necessary for practical use in digital orthopedic training. To fill
this gap, we propose a novel visual-inertial tracking system tailored for orthope-
dic surgical training. It provides 6D object poses, video streams, and IMU data
in real-time, facilitating applications such as AR guidance, skill assessment, and
digital twin generation. Our key contributions are:
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– A visual-inertial tracking method that integrates a custom fiducial object
combining multiple ArUco markers with an IMU sensor, enabling tracking
of interacting tools and anatomical structures in a surgical setup.

– A two-stage pose estimation pipeline, combining dual-camera-based vision
pose estimation for occlusion robustness with a sensor fusion step that aug-
ments pose estimates with IMU data and effectively addresses sensor drift.

– An integrated spatial-temporal calibration framework embedded within the
tracking pipeline, simultaneously handling coordinate alignment and IMU-
camera time synchronization, crucial for precise sensor fusion.

Our approach uses off-the-shelf hardware, ensuring easy integration into surgical
training setups. In our evaluation, we assess the system’s accuracy and occlusion
rates by quantifying the 6D pose accuracy of the fiducial object, highlighting the
benefits of a multi-camera setup, and illustrating the system’s ability to extract
meaningful motion metrics in a mock orthopedic surgery scenario.

2 Method

Figure 1 provides an overview of the proposed tracking system, illustrating the
individual components and the data flow through the processing pipeline.
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Fig. 1: Overview of the proposed visual-inertial tracking system. The 6D poses
of the fiducial objects are estimated using a two-step processing pipeline. The
output consists of real-time 6D pose estimates, video streams, and IMU data.

2.1 Custom Fiducial Object

Figure 2 shows the custom fiducial object. We designed it in a dodecahedron
shape with ArUco markers glued onto its faces, similar to the DodecaPen [32].
This configuration ensures that the fiducial object is detectable from all view-
ing angles and enhances pose estimation accuracy by providing multiple ArUco
markers on different planes simultaneously. Our 3D-printed design is lightweight,
easily attachable to objects using screws, and features a removable lid secured by
a snap-fit mechanism. Inside of the fiducial object, we integrate a battery and an
IMU that captures acceleration and angular velocity data. We use Bluetooth Low
Energy to transmit the IMU data and the battery state of charge to a computer.
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Fig. 2: Overview of the custom-designed fiducial object with and without lid,
and mounted on a surgical drill and a screwdriver.

Since the ArUco markers are manually attached, we perform fiducial object cal-
ibration to obtain an accurate 3D representation of the marker corners by using
a similar procedure as described in [32]. Specifically, we capture the fiducial ob-
ject from multiple viewpoints and perform bundle adjustment to jointly refine
both camera poses and marker corner positions to minimize reprojection error
of the ArUco marker corners. Unlike [32], we enforce unit-length edges and right
angles in the marker representations, as the primary source of calibration error
lies in marker placement rather than marker printing. This additional constraint
simplifies the calibration process while ensuring correct marker geometry.

2.2 Vision-Based Pose Estimation

Figure 3 illustrates the steps of the vision-based pose estimation pipeline. We
calculate the poses for each camera independently to maintain tracking dur-
ing occlusions of one camera. First, we crop the camera frames based on the
last known positions of the fiducial objects to reduce computational cost. We
then process each crop to detect all visible ArUco markers, which gives us the
unique marker IDs along with their 2D corner pixel coordinates. Using a stan-
dard Perspective-n-Point (PnP) algorithm, we estimate the initial 6D poses of
the fiducial objects by matching the 2D corners with the known 3D marker con-
figuration obtained during fiducial calibration. To avoid the known issue of pose
ambiguities [19], at least two detected markers are required per object. We filter
out any markers that have a high reprojection error, usually caused by inaccurate
corner localization due to motion blur or partial occlusions. To detect fiducial
objects that newly enter the camera frame, we perform full-frame analysis at
predefined intervals.

2.3 Visual-Inertial Sensor Fusion

After obtaining the 6D pose estimates of the fiducial object from the vision-
based pose estimation step, we fuse them with the IMU data. The corresponding
pipeline is shown on the right side of Figure 3. We formulate the fusion task as
a state estimation problem, where the state vector x of the fiducial object is
estimated using the sensor measurements zinertial and zvision from the IMU and
cameras, respectively.
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Fig. 3: Overview of the two separate pose estimation components. In the vision-
based step, the camera frames are processed to obtain initial 6D poses. They are
then integrated with IMU data for pose refinement in the sensor fusion step.

State Description We model the state x of the fiducial object as [8]:

x =
[
pC qC vC bI

a bI
ω

]
(1)

where pC and vC are the position and the velocity of the fiducial object, respec-
tively, and qC is its orientation expressed using quaternion notation, all given in
the main camera frame. bI

a and bI
ω are the accelerometer and gyroscope biases

in the IMU frame, respectively, and account for measurement drift of the IMU.
The state is propagated in time using the function f that follows a first-order
continuous-time dynamics model, equivalent to the approach in [8].

Sensor Models The measurements of the IMU are described as:

zinertial =

[
ãI

w̃I

]
=

[
aI + bI

a + nI
a −RI

WgW

wI + bI
ω + nI

ω

]
(2)

where ãI and w̃I are the measured linear acceleration and angular velocity of
the fiducial object, respectively. aI and wI are the true linear acceleration and
angular velocity, and nI

a and nI
ω are Gaussian noise terms. The accelerometer

measures gravity, which is transformed from the gravity-aligned world frame to
the IMU frame using the rotation matrix RI

W . The measurements of the vision-
based pose estimation are only corrupted by Gaussian noise such that

zvision =

[
p̃C

q̃C

]
=

[
pC + nC

p

qC ⊗ δqC

]
(3)

where p̃C and q̃C are the measured position and orientation of the fiducial
object, respectively, and nC

p and δqC are Gaussian noise terms, with ⊗ denoting
quaternion multiplication. The main camera frame is arbitrarily selected, and
the measurements from the other camera are transformed using the extrinsics.

Sensor Calibration To fuse measurements from different sensors and coordi-
nate systems, we perform sensor calibration following the framework of Geneva
and Huang [11]. It estimates the IMU to fiducial object frame and main camera
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to world frame transformations, as well as the time offset between the IMU and
the cameras. We integrate the calibration directly into our pipeline and perform
it by collecting camera and IMU data of the fiducial object for a short period
while exciting all degrees of freedom. The calibration is performed once before
tracking starts and is stored for future use.

State Estimation We estimate the state vector x using a fixed-lag smoother,
which refines older states using future measurements. In comparison to a pure
filter-based approach, such as a Kalman filter, a smoother improves accuracy and
rejects outliers by introducing a slight delay [9]. We implement the smoother by
leveraging factor graph optimization [16], which efficiently estimates the state
vector using preintegration of the IMU measurements [9].

3 Evaluation

3.1 Implementation Details

For our setup, we use two monochrome cameras (Baumer VCXU.2-57C) with
6mm f/4 lenses (Edmund Optics) and a light source. The cameras are rigidly
mounted at a 60◦ angle and calibrated intrinsically and extrinsically using a
ChArUco board. The resulting trackable volume fits a general phantom setup as
shown in Figure 1. Each camera records at 20 Hz with a 5 MP resolution and
an exposure time of 10 ms to minimize motion blur. The frame rate is selected
such that real-time inference is possible. The IMUs are part of microcontrollers
(Seeed Studio XIAO) and sample at 200 Hz. A computer running Windows 11
with an Intel Core i7-14700T CPU and 16 GB of RAM processes all data in real-
time. The software pipeline is implemented using the Robot Operating System
(ROS) in Python and C++ with OpenCV for image processing [3] and GTSAM
for sensor fusion [7]. The lag of the smoother is user-defined and set to 100 ms.

3.2 Experiment Design

The primary goal of the evaluation is to quantify the accuracy and occlusion rates
of the proposed tracking system. For this purpose, we conduct two experiments.
First, we evaluate the fiducial object by tracking it simultaneously using the
proposed visual-inertial tracking system and an OTS (Atracsys fusionTrack 500),
serving as ground truth. The OTS achieves a Root Mean Square Error (RMSE) of
80 µm up to 2 m at 335 Hz [1]. To this end, we mount an additional OTS marker
on the fiducial object and extrinsically calibrate the OTS and the main camera,
as well as the two markers [25]. The setup is illustrated in Figure 4a. In the
second experiment, we simulate a mock surgical procedure by drilling five holes
into a biomechanical foam testing block (Synbone, 30 PCF) using a surgical drill
(Unium, 2 mm diameter) and tracking both the drill and the foam block with the
proposed system. Subsequently, we mount OTS markers on the setup and trace
the holes using the drill. Figure 5a depicts the two configurations. Finally, we
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generate a digital twin from both recordings in a collider-based Unity simulation
environment and evaluate drill hole metrics. For this purpose, we determine the
drill tip position through pivot calibration [33] and sample points on the foam
block surface with a pointer marker to align its mesh with the marker frame [2].

3.3 Results and Discussion

Fiducial Object Tracking We recorded multiple datasets, lasting a total of
144 s, that include linear and rotational movements with varying velocities of
the fiducial object. Figure 4b shows an extract from one dataset with the fiducial
object trajectory compared to the OTS ground truth for different configurations.
Table 1a quantifies the accuracy and the camera occlusion rates, i.e., the ratio
between the summed occlusion durations and total tracking time. The best re-
sults are achieved when using both cameras and the IMU, with a RMSE of 0.9
mm for position and 0.5 degrees for orientation and no occlusions. The occlu-
sion rate of the ground truth was quite high at 7%, which might result from
the fact that at least five out of six spheres of the OTS marker needed to be
visible for successful tracking. The proposed system outperforms a single-camera
setup in terms of accuracy and occlusion rates, demonstrating the benefits of the
multi-camera setup and the sensor fusion algorithm.
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Fig. 4: (a) Fiducial object with ground truth markers and (b) a dataset extract
of the smoothed fiducial object trajectory compared to the ground truth, lasting
2.9 s. In the close-up on the right, the value of smoothing is visible: during
the rapid movement, the purely filter-based result drifts away from the ground
truth between camera updates, while the fixed-lag smoother constrains the pose
estimates with future measurements.

Digital Twin Figure 5b depicts the drill holes obtained from the proposed sys-
tem compared to the ground truth in a digital twin representation. The holes are
accurately generated as demonstrated quantitatively in Table 1b. Overall, the
accuracy values are inferior to the previous experiment and have a higher vari-
ance. This is likely due to calibration errors of the drill tip and the foam block,
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and uncertainties such as the flexion of the drill shaft, which are not directly
attributable to the proposed system. We observed low camera occlusion rates
during the procedure, indicating the system’s robustness. However, as equally
low occlusion rates are observed for the ground truth, we cannot conclude that
the proposed system is superior in this regard and the small amount of data
in a controlled environment might be insufficient to demonstrate a difference.
Notably, the IMU does not suffer from any occlusions and measurements are
continuously provided at 200 Hz.
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Fig. 5: (a) Mock surgical procedure with a drill and foam block and (b) digital
twin of the drill holes from the proposed system compared to the ground truth.

Table 1: Evaluation results of proposed tracking system. (a) Position and ori-
entation RMSE and camera occlusion rates of fiducial object pose for different
system configurations. (b) Drill hole entry position, angle, and length offsets in
the digital twin, and camera occlusion rates during the procedure.

(a)

Configuration
prmse [mm] θrmse [◦] occl. [%]#cams IMU

1 × 1.4 0.7 2
1 √

1.0 0.5 2
2 √

0.9 0.5 0
Ground truth - - 7

(b)

Metric Min Max Avg
∆p [mm] 0.9 2.3 1.7
∆θ [◦] 0.4 5.4 2.0
∆l [mm] 0.3 2.0 1.0
Occl. (proposed) [%] 0
Occl. (ground truth) [%] 3

Overall, our system enables extraction of meaningful motion metrics and accu-
rate digital twin generation, with a RMSE of approximately 1-2 mm and 2◦ in
the mock surgical scenario. When comparing its performance to estimated ac-
curacy requirements reported in the literature for orthopedic procedures, such
as angular offsets up to 5◦ for hip implant placement, 3◦ for knee arthroplasty,
and combined limits of around 1 mm and 5◦ for pedicle screw insertion [18, 22],
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our system lies within or below these thresholds. These results demonstrate the
system’s suitability for training across a wide range of orthopedic interventions.

4 Conclusion

This paper presents a novel visual-inertial 6D object tracking system for ortho-
pedic surgical training. By fusing data from ArUco markers and an IMU with
dual-camera image streams, our system delivers real-time 6D pose estimates of
surgical tools and anatomical structures. Cost-effective components and straight-
forward integration into existing training workflows make the system a valuable
tool for scalable orthopedic surgical training applications. Our evaluation demon-
strated the system’s high accuracy and robustness in a simple surgical scenario.
Future work will focus on analyzing the system’s performance and usability in
a more sophisticated training setting with medical students.

Acknowledgments. This project was funded by the Swiss Innovation Promotion
Agency (Innosuisse) (Grant No. 102.079 IP-ICT).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Atracsys LLC: Fusiontrack 500 - high-performance optical tracking system. https:
//atracsys.com/fusiontrack-500/ (2025), accessed: 2025-06-25

2. Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: Sensor fusion
IV: control paradigms and data structures. vol. 1611, pp. 586–606. Spie (1992)

3. Bradski, G.: The opencv library. Dr. Dobb’s Journal of Software Tools (2000)
4. Burton, W., Myers, C., Rutherford, M., Rullkoetter, P.: Evaluation of single-stage

vision models for pose estimation of surgical instruments. International Journal of
Computer Assisted Radiology and Surgery 18(12), 2125–2142 (2023)

5. Cecil, J., Ramanathan, P., Rahneshin, V., Prakash, A., Pirela-Cruz, M.: Collab-
orative virtual environments for orthopedic surgery. In: 2013 IEEE international
conference on automation science and engineering (CASE). pp. 133–137. IEEE
(2013)

6. Chen, L., Ma, L., Zhang, F., Yang, X., Sun, L.: An intelligent tracking system
for surgical instruments in complex surgical environment. Expert Systems with
Applications 230, 120743 (2023)

7. Dellaert, F., Contributors, G.: borglab/gtsam (May 2022).
https://doi.org/10.5281/zenodo.5794541, https://github.com/borglab/gtsam

8. Enayati, N., De Momi, E., Ferrigno, G.: A quaternion-based unscented kalman
filter for robust optical/inertial motion tracking in computer-assisted surgery. IEEE
Transactions on Instrumentation and Measurement 64(8), 2291–2301 (2015)

9. Forster, C., Carlone, L., Dellaert, F., Scaramuzza, D.: On-manifold preintegration
for real-time visual–inertial odometry. IEEE Transactions on Robotics 33(1), 1–21
(2016)



10 M. Hogenkamp et al.

10. Gani, A., Pickering, O., Ellis, C., Sabri, O., Pucher, P.: Impact of haptic feedback
on surgical training outcomes: a randomised controlled trial of haptic versus non-
haptic immersive virtual reality training. Annals of Medicine and Surgery 83,
104734 (2022)

11. Geneva, P., Huang, G.: vicon2gt: Derivations and analysis. Technical Report
(2020), https://udel.edu/~ghuang/papers/tr_vicon2gt.pdf

12. Hein, J., Cavalcanti, N., Suter, D., Zingg, L., Carrillo, F., Calvet, L., Farshad,
M., Pollefeys, M., Navab, N., Fürnstahl, P.: Next-generation surgical navigation:
Marker-less multi-view 6dof pose estimation of surgical instruments. arXiv preprint
arXiv:2305.03535 (2023)

13. Hein, J., Giraud, F., Calvet, L., Schwarz, A., Cavalcanti, N.A., Prokudin, S., Far-
shad, M., Tang, S., Pollefeys, M., Carrillo, F., et al.: Creating a digital twin of
spinal surgery: A proof of concept. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 2355–2364 (2024)

14. Howells, N.R., Brinsden, M.D., Gill, R.S., Carr, A.J., Rees, J.L.: Motion analysis: a
validated method for showing skill levels in arthroscopy. Arthroscopy: The Journal
of Arthroscopic & Related Surgery 24(3), 335–342 (2008)

15. Johns, B.D.: The creation and validation of an augmented reality orthopaedic
drilling simulator for surgical training. Ph.D. thesis, Citeseer (2014)

16. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product
algorithm. IEEE Transactions on information theory 47(2), 498–519 (2001)

17. McKnight, R.R., Pean, C.A., Buck, J.S., Hwang, J.S., Hsu, J.R., Pierrie, S.N.:
Virtual reality and augmented reality—translating surgical training into surgical
technique. Current reviews in musculoskeletal medicine 13, 663–674 (2020)

18. Mor, A., Jaramaz, B., DiGioia, A.: Accuracy and validation. Computer and Robotic
Assisted Hip and Knee Surgery, OUP (2004)

19. Oberkampf, D., DeMenthon, D.F., Davis, L.S.: Iterative pose estimation using
coplanar feature points. Computer Vision and Image Understanding 63(3), 495–
511 (1996)

20. Pastor, T., Cattaneo, E., Pastor, T., Gueorguiev, B., Beeres, F.J., Link, B.C.,
Windolf, M., Buschbaum, J.: Digitally enhanced hands-on surgical training (dehst)
enhances the performance during freehand nail distal interlocking. Archives of or-
thopaedic and trauma surgery 144(4), 1611–1619 (2024)

21. Pourkand, A., Salas, C., Regalado, J., Bhakta, K., Tufaro, R., Mercer, D., Grow,
D.: Objective evaluation of motor skills for orthopedic residents using a motion
tracking drill system: outcomes of an abos approved surgical skills training pro-
gram. The Iowa orthopaedic journal 36, 13 (2016)

22. Rampersaud, Y.R., Simon, D.A., Foley, K.T.: Accuracy requirements for image-
guided spinal pedicle screw placement. Spine 26(4), 352–359 (2001)

23. Riehl, J., Widmaier, J.: A simulator model for sacroiliac screw placement. Journal
of surgical education 69(3), 282–285 (2012)

24. Ruikar, D.D., Hegadi, R.S., Santosh, K.: A systematic review on orthopedic sim-
ulators for psycho-motor skill and surgical procedure training. Journal of medical
systems 42, 1–21 (2018)

25. Shah, M.: Solving the robot-world/hand-eye calibration problem using the kro-
necker product. Journal of Mechanisms and Robotics 5(3), 031007 (2013)

26. Shu, H., Liang, R., Li, Z., Goodridge, A., Zhang, X., Ding, H., Nagururu, N.,
Sahu, M., Creighton, F.X., Taylor, R.H., et al.: Twin-s: a digital twin for skull base
surgery. International journal of computer assisted radiology and surgery 18(6),
1077–1084 (2023)



6D Object Pose Tracking for Orthopedic Surgical Training 11

27. Sorriento, A., Porfido, M.B., Mazzoleni, S., Calvosa, G., Tenucci, M., Ciuti, G.,
Dario, P.: Optical and electromagnetic tracking systems for biomedical applica-
tions: A critical review on potentialities and limitations. IEEE reviews in biomed-
ical engineering 13, 212–232 (2019)

28. Stenmark, M., Omerbašić, E., Magnusson, M., Andersson, V., Abrahamsson, M.,
Tran, P.K.: Vision-based tracking of surgical motion during live open-heart surgery.
Journal of Surgical Research 271, 106–116 (2022)

29. Wang, J., Meng, M.Q.H., Ren, H.: Towards occlusion-free surgical instrument
tracking: A modular monocular approach and an agile calibration method. IEEE
Transactions on Automation Science and Engineering 12(2), 588–595 (2015)

30. Wang, J., Song, S., Ren, H., Lim, C.M., Meng, M.Q.H.: Surgical instrument track-
ing by multiple monocular modules and a sensor fusion approach. IEEE Transac-
tions on Automation Science and Engineering 16(2), 629–639 (2018)

31. Wu, L., Seibold, M., Cavalcanti, N.A., Hein, J., Gerth, T., Lekar, R., Hoch, A.,
Vlachopoulos, L., Grabner, H., Zingg, P., et al.: A novel augmented reality-based
simulator for enhancing orthopedic surgical training. Computers in Biology and
Medicine 185, 109536 (2025)

32. Wu, P.C., Wang, R., Kin, K., Twigg, C., Han, S., Yang, M.H., Chien, S.Y.: Do-
decapen: Accurate 6dof tracking of a passive stylus. In: Proceedings of the 30th
Annual ACM Symposium on User Interface Software and Technology. pp. 365–374
(2017)

33. Yaniv, Z.: Which pivot calibration? In: Medical imaging 2015: Image-guided pro-
cedures, robotic interventions, and modeling. vol. 9415, pp. 542–550. SPIE (2015)


