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Abstract. Chest radiography (CXR) plays a crucial role in the diag-
nosis of various diseases. However, the inherent class imbalance in the
distribution of clinical findings presents a significant challenge for cur-
rent self-supervised deep learning models. These models often fail to
accurately classify long-tailed classes. Current Vision-Language models
such as Contrastive Language Image Pre-training (CLIP) models effec-
tively model the manifold distribution of the latent space, enabling high
zero-shot classification accuracies. Although CLIP performs well on most
of the primary classes in the dataset, our work reveals that its effective-
ness decreases significantly for classes with a long-tailed distribution.
Our approach employs a class-weighting mechanism that directly aligns
with the distribution of classes within the latent space. This method
ensures a substantial improvement in overall classification performance,
with particular emphasis on enhancing the recognition and accuracy of
rarely observed classes. We accomplish this by applying Gaussian Mix-
ture Model (GMM) clustering to the latent space. The subsequent clus-
ters are further refined by Student t-distribution, followed by a metric
loss that utilizes the altered embeddings. Our approach facilitates stable
and adaptive clustering of the features. This results in a notable average
improvement of 7% points in zero-shot AUC scores across 40 classes in
the MIMIC-CXR-JPG dataset from previous SOTA models.
Our code is publicly available at: CXR-CML.

1 Introduction

Chest radiography (CXR) is one of the most widely utilized diagnostic tools
in clinical practice, providing essential information on a variety of pulmonary
and cardiothoracic conditions [27]. The availability of large public CXR datasets
[9] with corresponding clinical reports has driven the development of vision-
language (VL) models in CXR Artificial Intelligence (AI) research [1]. More-
over, the high cost of annotations, coupled with a shortage of radiologists, has
prompted investigations on the effective use of self-supervised learning (SSL)
methods [25,31,30,18,5]. While SSL methods rely on contrastive learning princi-
ples, CLIP [24] directly contrasts the extracted visual and language features,
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thus achieving impressive zero-shot performance on inherently derived cate-
gories. Unlike other SSL methods, CLIP eliminates the need for further category
based finetuning. Due to the prevalent data distribution in CXR datasets [20],
CLIP based VL-SSL models deliver impressive performance [29,16,31,1] on com-
monly occuring diseases such as pneumonia or pleural effusion. However, many
clinically relevant findings are underrepresented in training distributions [12],
thus negatively impacting the robustness and clinical applicability of these mod-
els [33]. Early VL approaches like ConVIRT [34] and GLoRIA [11] introduced
contrastive learning frameworks to align medical images and text, thereby im-
proving multimodal representation learning. Building on these, CXR-BERT [3]
specialized in pretraining on chest X-ray reports, while MedKLIP [31] enhanced
performance by integrating structured clinical knowledge. Recent advancements
[32,7,26], have further improved zero-shot pathology classification across multi-
ple CXR datasets, demonstrating the reliability of VL models.

Although notable, these systems remain unsuitable for practical deployment
due to inconsistent performance across all categories of pathologies [2]. Specifi-
cally, these methods often assume uniform Gaussian distributions in the latent
space, which may not adequately represent the distribution heterogeneity present
in medical datasets. This leads to suboptimal clustering and conflating feature
representation for rare diseases [10].

Consequently, we present CXR-CML (Chest X-ray Contrastive Metric Learn-
ing) which seeks to model the latent distribution such that the long-tailed classes
are appropriately clustered. For this purpose we first apply a Gaussian Mixture
Model (GMM)[28] on the latent space derived from CLIP [24]. A Student t-
distribution [15] further refines the GMM [28], enhancing the inherent clusters
[24]. Subsequently, we utilize domain-specific metric learning to leverage these
clusters and enhance the feature space, thereby ensuring that the model acquires
distinct representations for both frequently and rarely seen classes. To evaluate
the robustness of our model, we evaluated it in the 40 categories released by
the "MICCAI challenge" [22]. This encompasses 12 rare and 28 common classes,
offering a comprehensive model evaluation previously unavailable in literature.

Main contributions: 1) We introduce CXR-CML, a method to model the
latent distribution manifold more effectively. This is accomplished through the
application of GMM [28] and refined with a Student-t distribution. 2) We lever-
age the clustered distribution to apply a metric loss that yields robust improve-
ment across a wide range of categories. 3) We conduct a robust evaluation using
5-fold cross-validation on 20% of the dataset across 12 long-tailed and 28 base
classes in MIMIC-CXR-JPG dataset[12] . To our knowledge, this study covers
the widest range of categories for CXR zero-shot classification evaluation.

2 Method

Given its remarkable zero-shot performance, our method is based on CLIP [23].
The model learns to correlate the images with their corresponding text captions
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Fig. 1: A Text Transformer & Vision Transformer extract embeddings from tex-
tual and visual inputs. A Gaussian Mixture Model (GMM), enhanced by the
Student’s t-distribution, is used to form and refine initial clusters, where Label
A and Label B represent semantically & visually similar conditions. Label C &
Label D form another related cluster. We use contrastive and triplet loss, further
refining the embedding space by improving intra-class compactness and inter-
class separation. For example, Label A & Label B correspond to ’Atelectasis’ and
’Lobar Atelectasis,’ while Label C & Label D correspond to ’Pleural Effusion’
and ’Pulmonary Edema,’ respectively.

through a cosine similarity loss in a shared latent space. In CXR-CML, we
apply GMM [28] on the CLIP extracted visual-language embeddings and refine
them using a Student t-distribution. This is followed by a metric loss that further
refines the feature space.

Modeling the latent space: GMM The GMM [28] is a probabilistic frame-
work that models complex data distributions using multiple Gaussian compo-
nents. The unsupervised algorithm effectively clusters high-dimensional data,
without overfitting to the dominant classes. However, its clusters are soft assign-
ments with overlapping boundaries, making it less distinct than more special-
ized clustering methods. This makes it especially suitable for multi-label CXR
data where images contain multiple pathologies. Therefore, GMM’s flexibility in
approximating diverse distributions makes it a viable choice for modeling het-
erogeneous CXR data. The algorithm requires us to set the expected number
of clusters, denoted as N . In CXR-CML, we apply GMM only on the visual
features, as they exhibit greater variability within our dataset when compared
to text.

Modeling the distribution: Student t-distribution The t-distribution’s
[15,21] heavy-tailed nature allows it to assign non-negligible probabilities to
data points far from the mean, which is critical for capturing underrepresented
classes in long-tailed distributions. This property is mathematically supported
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by its polynomial decay, as opposed to the exponential decay of the Gaussian
distribution, enabling it to better model the rare but significant instances often
found in medical data. Unlike traditional GMMs [28], which assume Gaussian-
distributed data, the t-distribution is better suited for capturing the heavy-tailed
nature of medical data, providing more robust covariance estimation and pre-
venting overfitting to Gaussian assumptions. By integrating the t-distribution
into our framework, we enhance the model’s ability to handle long-tailed classes,
ensuring stable and discriminative clustering.

Given a batch of feature embeddings z ∈ Rd, we model the data using a
mixture of Student’s t-distributions. This is mathematically described as:

p(z) =

K∑
k=1

πk T (z | µk,Σk, ν), (1)

where πk is the mixture weight, µk is the mean vector, Σk is the covariance
matrix, and ν is the degrees of freedom for the k-th t-distribution component.
The degrees of freedom ν control the heaviness of the tails, allowing the model
to better adapt to outliers and rare classes.

The Student’s t-distribution is defined as:
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(2)
where d is the dimensionality of the embeddings, and Γ (·) is the gamma func-

tion. As ν → 1, the distribution approaches the standard Cauchy distribution
[13] with heavy tails, while as ν → ∞, it converges to the Gaussian distribution.
This formulation allows the model to assign higher probabilities to outliers, mak-
ing it more robust to rare classes. As a result, this algorithm enhances existing
image-text correlation clusters.

Metric Learning: Triplet Loss In addition to the original contrastive loss
Lc [24], we apply a metric loss on the GMM clusters. Metric learning includes
various loss functions, such as Ranked List Loss and center loss, to enhance class
discriminability. It is typically used to train a network to distinguish features that
are hard to differentiate. In this context, given the data distribution and clusters
formed by the GMM phase, we find triplet loss Lm to be suitable [4,17]. The
GMM clustering assignments are used to generate pseudo-labels, which guide
the selection of triplets needed for Lm. The triplets (a,p,n) are selected, where
a is an anchor, p is a positive sample (from the same cluster as a), and n is a
negative sample (from a different cluster). The loss is mathematically defined as:

Lm =
∑

(a,p,n)

max(0, d(a,p)− d(a,n) + α), (3)
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where d(·, ·) is the standard Euclidean distance between embeddings a and p,
and α is a hyperparameter that defines the margin, ensuring sufficient separation
between clusters. While Lc implicitly encourages intra-cluster compactness and
inter-cluster separation, Lm provides explicit further guidance to the network.
CXR-CML is trained with the complete loss which is given as,

L = Lc + Lm. (4)

Text Generation MIMIC-CXR-JPG [12] is a multi-label dataset. We generate
“meta labels” using the data provided by MICCAI challenge "CXR-LT" [22]. The
labels are derived from the clinical reports provided in the dataset. These labels
indicate the absence or presence of specific diseases for each image. Textual
descriptions are constructed for all classes that are marked as present in the
groundtruth annotations. For example, for an image containing adenopathy and
pulmonary effusion, the generated text is:

“adenopathy is present, pulmonary effusion is present”

By utilizing standard disease names, our method enables the text embeddings
to act as weak supervisory signals to enhance training.

3 Experimental Setup

Dataset We evaluate our method on the MIMIC-CXR-JPG dataset [12,22],
which consists of 234,800 frontal-view chest X-ray JPG images labeled with
39 disease classes. The original MIMIC-CXR-JPG dataset includes 14 disease
classes, while the "CXR-LT MICCAI challenge" [22], introduced an additional
26 classes. [22] expands the scope of the dataset to include a much larger category
of critical and underrepresented classes. Table 1 denotes the high data imbalance,
showing the distribution of disease classes according to the sample count for each
category. There are 11 disease classes containing more than 10,000 samples, 17
classes ranging between 1,000 and 10,000 samples, and 12 classes having fewer
than 1,000 samples. For our experiments, we categorize the dataset into base and
rare classes: classes with fewer than 1,000 samples are rare and the remaining
are base. Consequently, rare classes constitute only 2% of the dataset.

Table 1: Distribution of disease classes based on the number of samples.
Class Category Number of Classes

Common (>10,000 samples) 11
Medium (1,000–10,000 samples) 17
Rare (<1,000 samples) 12

Furthermore, we split the dataset into training and test sets using an 80:20
ratio, with no patient overlap between the sets. Additionally, we employ 5-fold
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cross-validation to robustly evaluate model performance. Text is generated from
the annotation data provided by MICCAI challenge as in Sec. 2.

Implementation Details We use the ViT-B/32 backbone for CLIP [6] and
conduct our experiments on a single node with 1 × NVIDIA RTX 2080 Ti
GPU (11 GB memory). All images are scaled to 224 × 224 in keeping with the
original CLIP architecture. The implementation is based on PyTorch version
2.4.0+cu118. We use a learning rate of 1e − 6 and a batch size bs of 32. The
AUC scores for base and rare classes are reported as the average of 5 runs. For
GMM, we use N = 40, as our dataset has labels for 40 pathologies. During the
final loss calculation, both Lc and Lm are equally weighted, ensuring a balanced
contribution to the optimization process. To optimize training, we employ a
ReduceLROnPlateau [19] learning rate scheduler with a reduction factor of 0.1
and a patience of 2 epochs.

4 Results

Table 2 indicates the 5-fold average AUC scores for all, base and rare classes
on the validation set [12]. Comparisons with other VL SOTA methods are also
shown. All the comparison models are trained and evaluated in a similar way.
MedClip [30], MedKLIP [31], and SLIP [18], achieve average AUCs of 0.476,
0.576, and 0.502, respectively. MedKLIP performs slightly better on rare classes
(0.574 AUC) compared to SLIP (0.495 AUC) and MedClip (0.450 AUC). These
models reflect considerable classification uncertainty, particularly for rare find-
ings.

CheXzero [8], our baseline model, achieves a total AUC of 0.644, with 0.647
and 0.631 AUC for base and rare classes, respectively. On the other hand, our
method, CXR-CML, achieves a macro AUC of 0.715, with 0.711 and 0.72 AUC
for base and rare classes, respectively. CXR-CML delivers an impressive 7% gain
over previous SOTA, indicating that CXR-CML successfully achieves SOTA
when evaluated over a comprehensive list of categories. These results demon-
strate how our method effectively leverages meta labels to learn the underlying
data distribution manifold in the CXR dataset. Consequently, the model is able
to discern even rarer classes that make up less than 2% of the dataset.

Ablation Study Table 3 shows the ablation study starting from the baseline
[8] model, followed by CheXzero trained on our dataset, and then with different
model configurations of CXR-CML. The impact of various batch sizes bs and
degrees of freedom (ν) in Student’s t-distribution is shown. The best performance
is achieved with a batch size of 32 and ν = 4, highlighting the importance of
careful hyperparameter tuning for optimal results.

Degrees of Freedom (ν) We investigate the impact of the degrees of freedom
parameter (ν) in Student’s t-distribution. Our classification results improve with
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Table 2: Zero-shot performance comparison of different methods depicted as
average AUC for the 28 base classes and 12 rare classes. Results are averaged
over 10 runs (std dev. < 0.04). Statistical significance (p < 0.00001) is indicated
by ∗ when compared to baseline.

Method Total AUC Base AUC Rare AUC

MedClip [30] 0.476 0.488 0.450
MedKLIP [31] 0.576∗ 0.574∗ 0.574∗

SLIP [18] 0.502 0.505 0.495
CheXzero (Baseline) [8] 0.644∗ 0.647∗ 0.631∗

CXR-CML (Ours) 0.715∗ 0.711∗ 0.720∗

Table 3: Ablation study of CXR-CML with different configurations compared
to the CheXzero baseline [8]. Results are reported as average AUC for base and
rare classes. Statistical significance (p < 0.00001) is indicated by ∗. Comparison
of AUC scores for different model configurations. bs is batch size and ν is degree
of freedom, ν = ∞ represents Gaussian distribution

Method Total AUC Base AUC Rare AUC

CheXzero (Baseline) [8] 0.644∗ 0.647∗ 0.631∗

CheXzero + Meta labels 2 0.691∗ 0.681∗ 0.707∗

CXR-CML (bs = 32, ν = 2) 0.710 0.710 0.710
CXR-CML (bs = 32, ν = 4) 0.715∗ 0.711∗ 0.720∗

CXR-CML (bs = 32, ν = 6) 0.715 0.710 0.718
CXR-CML (bs = 32, ν = ∞) 0.716 0.713 0.720

CXR-CML (bs = 16, ν = 4) 0.705 0.700 0.710
CXR-CML (bs = 32, ν = 4) 0.715∗ 0.711∗ 0.720∗

CXR-CML (bs = 64, ν = 4) 0.711 0.707 0.716

increasing ν, while ν approaches values defining a Gaussian distribution [14]. The
Gaussian distribution AUC scores are marginally higher, but without statistical
significance when compared to ν=6. However, our experiments indicate that
applying a student t-distribution results in greater model stability.

Batch Size We evaluate the effect of batch size on model performance. A
batch size of 32 achieves the best performance, with an overall AUC of 0.715.
Increasing the batch size to 64 results in a slight performance drop (0.715 to 0.711
AUC). Smaller batch sizes (e.g., 16 and 8) lead to more significant performance
degradation (0.715 to 0.705 AUC), likely due to dependence of the contrastive
loss Lc on the batch size [24].

Feature visualization Fig. 2 illustrates the t-SNE plots of both the CheXzero
baseline and our method, with a batch size of 32. Though the baseline model
exhibits well defined clusters, the quantitative results show that our method
performs better across the complete list of categories. Overall the results suggest
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Table 4: Comparison of computational efficiency between CheXzero + Meta
labels and CXR-CML.

Metric CheXzero +
Meta labels

CXR-CML Difference (%)

FLOPs per second 1.87× 107 2.26× 107 +20.83%
Training time per step (s) 53.3882 66.2795 +24.15%

that CXR-CML can accurately capture the differentiating characteristics of the
long-tailed classes.

(a) Latent space of CheXzero (b) Latent space of CXR-CML

Fig. 2: t-SNE visualization of CLIP features for different models. The plot rep-
resents the latent space clustering of 40 disease classes using CheXzero and
CXR-CML over full validation set.

Computational efficiency Table 4 tabulates the additional computational
cost associated with CXR-CML compared to CheXzero + Meta labels. Specif-
ically, CXR-CML incurs a 20.83% increase in FLOPs per second and a 24.15%
increase in training time per step. This increase in computational overhead can
be mainly attributed to the GMM component.

5 Conclusion

CXR-CML showcases a notable enhancement in zero-shot classification perfor-
mance, by modeling the latent space with an emphasis on the long-tailed data
distribution. In this study, we employ the Student t-distribution to provide a
robust mathematical framework for clustering, enhancing the representation of
underrepresented categories. This improved clustering further strengthens the
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subsequent metric learning stage, leading to enhanced classification performance.
Future work will explore additional VL-SSL methods as comparative baselines
and extend evaluation to other medical domains. A key limitation of CXR-CML
is the additional computational cost introduced by the GMM stage to be ad-
dressed in future research.
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