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Abstract. Diabetic retinopathy (DR) is a serious complication of dia-
betes, requiring rapid and accurate assessment through computer-aided
grading of fundus photography. To enhance the practical applicability of
DR grading, domain generalization (DG) and foundation models have
been proposed to improve accuracy on data from unseen domains. De-
spite recent advancements, foundation models trained in a self-supervised
manner still exhibit limited DG capabilities, as self-supervised learning
does not account for domain variations. In this paper, we revisit masked
image modeling (MIM) in foundation models to advance DR grading
for domain generalization. We introduce a MIM-based approach that
transforms images to achieve standardized color representation across
domains. By transforming images from various domains into this color
space, the model can learn consistent representation even for unseen im-
ages, promoting domain-invariant feature learning. Additionally, we em-
ploy joint representation learning of both the original and transformed
images, using cross-attention to integrate their respective strengths for
DR classification. We showed a performance improvement of up to nearly
4% across the three datasets, positioning our method as a promising so-
lution for domain-generalized medical image classification.

Keywords: Domain Generalization - Masked Image Modeling - Fundus
Photography.

1 Introduction

Diabetic retinopathy (DR) is one of the major complications of diabetes, which
can lead to retinal damage, vision loss, and even blindness [11]. Therefore, early
diagnosis is crucial for preventing DR, and color fundus photography (CFP) with
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a computer-aided grading system allows ophthalmologists to perform rapid and
accurate diagnoses. Though various methods have been proposed for DR grading
[13], these methods exhibit low accuracy when applied to samples from different
hospitals, indicating limited practical applicability due to poor generalization.

To address this, several domain generalization (DG) methods have been pro-
posed for CFP [2,9,28, 31|, aiming to achieve high accuracy on unseen domain
datasets by training the model on multiple domain datasets. Specifically, ex-
isting methods address DG by (a) manipulating images [21, 30], (b) reducing
the domain gap in feature space [9,23, 26, 28|, and (c) employing novel train-
ing strategies [2, 6,31, 32]. Meanwhile, foundation models [5,25] have recently
emerged, exhibiting enhanced generalization accuracy, often surpassing existing
DG approaches due to the scale and diversity of their training data [29]. Con-
sequently, leveraging the robust representations of foundation models becomes
promising to achieve high DG accuracy.

In line with this approach, foundation models such as RETFound [34] have
been introduced for CFP. Despite the extensive training on 0.9 million CFP,
RETFound’s generalization capacity remains limited (as shown in our results).
This limitation stems from the fact that the foundation model’s self-supervised
learning does not account for domain variations. For instance, masked image
modeling (MIM) [14] in RETFound effectively captures contextual information
within images by reconstructing randomly masked patches. However, large differ-
ences in color and contrast among CFP from different domains make it difficult
to learn domain-invariant features. To address this challenge, we revisit MIM
within foundation models for domain-generalized CFP classification.

Our proposed method adapts the MIM process to learn domain-invariant
features by leveraging a standardized color space. To be specific, we first trans-
form the image into a standardized color space based on the RGB statistics
of the training dataset. Next, we randomly mask the original image and train
the model to reconstruct it in the standardized space rather than in the original
RGB space. This approach enables our model to standardize unseen images from
any domain within a consistent color space. During this process, the encoder si-
multaneously learns domain-invariant features and contextual information. No-
tably, the transformed images exhibit a more consistent and enhanced contrast
compared to the original images, yet they may lose certain details after trans-
formation. Building on this MIM encoder training, we further propose the joint
representation of the original and transformed images, as each image presents
unique strengths for DR classification. We extract features from both images
separately and apply cross-attention to align their features. By enhancing ex-
isting foundation models, which already demonstrate state-of-the-art accuracy
across various fields [29], our approach represents a highly promising solution for
domain-generalized medical image classification. In summary, the contributions
are as follows: (i) We introduce a novel masked image modeling approach based
on a standardized color space to train a domain-generalized feature encoder for
CFP classification. (ii) Building on this feature encoder, we propose blending the
original and transformed images for DR classification, employing cross-attention
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Fig. 1. Illustration of our proposed method, which comprises two stages: Stage 1.
Masked Image Transformation and Stage 2. Joint Representation Learning. X, repre-
sents the original image, X;’ represents the transformed image, and X; denotes the
color-standardized image. In Stage 1, masked patches from X; and the corresponding
class label y; are fed into the encoder E and decoder D, with training based on Lsra.
In Stage 2, using the blended image Z;, features f; and g; extracted from X; and Z;
via F are passed into the cross-attention module Attncross. The resulting features are
averaged to produce h;. For classification, h; is then passed into the classification head
Cls to predict the label, with cross-entropy loss Lcg used for training.

between them. This approach generates robust and informative features for un-
seen domain images. (iii) We achieve state-of-the-art accuracy in eye disease
classification across three datasets, outperforming recent DG methods.

2 Method

Overview. The illustration of our proposed method is shown in Fig. 1. Our
model consists of an encoder F, a decoder D, a multi-head cross-attention mod-
ule Attne,oss, and a classification head Cls. The parameters of the encoder F
and decoder D are initialized using a pre-trained foundation model (i.e., RET-
Found [34]) to leverage its strong representational capacity, while the parameters
in the other modules are initialized randomly. The proposed framework consists
of two distinct stages: robust encoder training through Masked Image Transfor-
mation (Stage 1) and domain-generalized classification with Joint Representa-
tion Learning (Stage 2). In the Stage 1, we train E and D with a modified MIM
approach that transforms images from any domain into a standardized color
space. In the Stage 2, building on the trained encoder, we employ joint repre-
sentation learning with cross-attention to leverage the complementary features
of both original and transformed images.

Standardized Color Transformation. CFP from different domains exhibit
distinct RGB color distributions. Therefore, aligning color distributions across
domains is crucial to ensure that the same anatomical regions of the eye are
mapped to comparable colors. Specifically, let C' denote the number of channels,
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H the image height, and W the image width. A given image X; € REXH*W jg
instance-normalized across the spatial dimensions [16] as: (X chw — Kic)/Tics
where X . 5. denotes the intensity of the c-th channel at the h, w pixel of the i-

1 H w 2 1 H
th sample, p1; . denotes g D1 D =1 Xic.hw, and o7 . denotes D e

HxW
w . . .
Y w1 Xiehw — pi.c)?. To transform any domain image into the standardized
N'" —H
color, we calculate the mean, p. = m el D oheq ZZ;V:1 X e.hw, and

the variance, 02 = Far7 Zf\:i Zthl Z,‘:,V:l(Xz‘,c,h,w — )%, of all N train-
ing images. The calculated o, and p. are then applied to transform the instance
normalized image into the target color space, i.e., the standardized color image
X;. Formally,

Xi,c,h,w = 0¢ ()(M> + Ue- (1)

Oic

An example of a standardized color image is shown in Fig. 2 (b). Although the
original images from different domains are visually distinct, simply applying the
scaling and shifting factors, i.e., 0. and p., to the normalized images makes them
appear similar. Note that o, and p. are calculated for each label, and different
values are applied to different labeled images when transforming X; to Xl-, since
image features may vary depending on the class label. For simplicity, we omit
the label notation in Eq. 1.
Masked Image Transformation. In contrast to the original MIM, which fo-
cuses solely on extracting self-reconstructive features, our approach aims to ex-
tract domain-invariant features. By mapping the same anatomical regions of the
eye to comparable colors, the model learns to transform images into a consis-
tent color representation, despite variations in color and contrast. Through this
process, the encoder acquires semantically meaningful representations that gen-
eralize across domains. Specifically, we redesign the training task to transform
the masked image into the standardized color image X, rather than reconstruct-
ing the original image X;. In MIM, this is formulated as:

Ly = (XY = XP) o (1- M)|3, (2)

where X7 " and Xf) indicate non-overlapping patches of X;" and X, respectively.
Also, M indicates a mask consisting of 0 and 1 for blocking random patches,
and © indicates element-wise multiplication. As a result, we can transform any
images from unseen domains into the standardized color without using labels and
obtain a robust feature encoder. Note that a robust feature encoder is required
beyond standardizing the image, as X, is often imperfect due to the absence of
label information during testing. Therefore, revisiting MIM is a valid choice for
training a domain-invariant feature encoder.

Joint Representation Learning. In this stage, the model is fine-tuned in
a supervised manner for the downstream classification task using the trained
encoder. With the encoder from Stage 1 kept frozen, we utilize LoRA (Low-
Rank Adaptation [15]) for fine-tuning [35]. Although the transformed images
provide more consistent and enhanced contrast, some details may be lost dur-
ing the transformation, as shown in Fig. 2 (e). To address this, we blend the
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RGB pixel values of X; and X', i.e., Z; = (X; + X;') x 0.5. Then, by extract-
ing features from Z;, i.e., g; = E(Z;), where g; € R, the joint representation
h; is obtained by averaging the cross-attention features of f; and g;. Notably,
since cross-attention has been utilized for learning domain-invariant feature rep-
resentations in domain adaptation [27] and for aligning multi-modal features
to achieve joint representation [19], these advantages encourage feature repre-
sentations to be more domain-invariant and informative. For classification, the
obtained joint representation h; is passed through layer normalization and then
fed into the classification head Cls to predict the label. The entire model is
optimized with cross-entropy loss (denoted as Log) between the classification
head’s output and the ground truth y;.

3 Experiments

Datasets. The proposed method is validated on three datasets. 4DR [28] is a
dataset containing CFP images for classifying five DR grades (i.e., normal, mild,
moderate, severe, and proliferative). It contains CFP images from four domains:
IDRiD [24] (D1), DeepDRiD [22] (D2), Sustech-SYSU [20] (D3), and DR-V03 [4]
(D4). APTOS-Messidor is similar to 4DR and contains CFP images from
three domains: APTOS [17] (D1), Messidor [7] (D2), and Messidor-2 [1] (D3).
Glaucoma is a dataset for classifying glaucoma (i.e., normal and glaucoma).
It contains CFP images from four domains: DRISHTI-GS [10] (D1), G1020 [3]
(D2), LAG [18] (D3), and ORIGA [33] (D4).

Experimental Details. We use an image size of 224x224. For validation set,
a non-overlapping 20% subset of the training datasets from each domain is used
to select the best model. We conduct each experiment three times with different
seeds and report the final accuracy by averaging those results. In Stage 1, we
set a batch size of 64 and train the model for 100 epochs under the leave-one-
domain-out protocol. For the remaining settings, we use the default values in
RETFound [34]. In Stage 2, we set a batch size of 32 and train the model for 50
epochs. LoRA sets a rank of 8 for all layers of the encoder except the first and last
ones. For the remaining settings, we use the default values in DomainBed [12].
Experimental Scenarios. To demonstrate our method’s superiority, we com-
pare our method against various DG methods proposed from different perspec-
tives. We compare our method with two data-level DG methods: Mixup [30],
and FedDG [21]; four feature-level DG methods: Fishr [26], CauDR [28], ATFS-
ViT [23], and SPSD-VIiT [9]; and four training-level DG methods: CaulRL [6],
DRGen [2], A2XP [32], and PLDG [31]. Additionally, we compare our method
with the fine-tuned RETFound [34] using three approaches: full training (RET-
FT), linear probing (RET-LP), and LoRA [15] (RET-LoRA). Notably, since
CauDR [28], SPSD-VIiT [9], DRGen [2]|, and PLDG [31] are proposed for CFP
DG scenarios, outperforming these methods are particularly important. Also,
to demonstrate our method’s scalability, we conduct experiments on APTOS-
Messidor and Glaucoma datasets. Achieving high accuracy in this experiment
demonstrates strong reliability across various CFP datasets.
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Table 1. Classification accuracy on the 4DR dataset. D1 represents the test accuracy
of domain 1, with the model trained on images from D2, D3, and D4. Bold indicates
the highest accuracy, and underline indicates the second-highest accuracy.

Method | D1 D2 D3 D4 |Avg. Method DI D2 D3 D4 [Avg
Mixup [30] |53.5 48.9 65.8 63.7|58.0 CaulRL [6] |51.9 51.4 67.8 57.0|57.0
FedDG [21] |58.6 48.0 61.2 62.0|57.5 DRGen [2] [56.0 50.0 59.4 67.9|58.3
Fishr [26] |57.2 47.7 67.6 56.3|57.2 A2XP [32] [51.7 34.3 36.3 56.0|44.6
CauDR [28] |60.5 54.2 72.7 59.9|61.8 PLDG [31] |58.5 51.3 75.8 64.0(62.4
ATFS-ViT [23]/61.0 39.4 50.7 66.0|54.3 ~RET-FT [34] |59.4 24.1 67.8 57.3|52.2
SPSD-ViT [9] |58.2 52.1 51.0 61.7|55.8  RET-LP [34] |42.3 41.9 61.3 49.3|48.7
Ours 62.2 48.8 80.7 68.3(65.0 RET-LoRA [34]|61.8 45.8 71.8 62.7|60.5

We conduct ablation experiments to assess the contribution of each stage to
the final performance. Our training process comprises Masked Image Transfor-
mation (Stage 1, abbreviated as S.1) and Joint Representation Learning (Stage
2, abbreviated as S.2). Also, to evaluate the impact on transformed image, we
conduct ablation studies by replacing the transformed image X; @ Im. (X, in
ours) with various images. We compare our method with X'i, X', and Z;. To
evaluate the impact on reconstructed image of RETFound, we exclude S.1 and
S.2, and evaluate the accuracy with X;, X;, and Z; w/ R. (blend with a recon-
structed image from RETFound). Additionally, we exclude S.2 and evaluate the
accuracy with Xj, XZ-, X,', and Z;, to perform ablation studies for more complex
scenarios. Lastly, we exclude S.1 and evaluate the accuracy with Z; w/ R..

4 Results

Comparison against Recent DG Methods. Table 1 shows the accuracy on
the 4DR dataset. The second-and third-place rankings of PLDG [31] and CauDR
[28] suggest that DG methods for CFP achieve higher accuracy than those for
natural images, demonstrating the effectiveness of tailored DG methods for CFP.
Despite comparisons with various data-, feature-, and training-level DG methods,
none of these approaches achieved high accuracy on the 4DR dataset. In contrast,
our method achieves the highest average accuracy, demonstrating the superiority
of the proposed approach. Notably, this superiority does not stem from the larger
capacity of the foundation model [34], as RET-FT, RET-LP, and RET-LoRA
(baseline) failed to outperform comparison methods (e.g., CauDR). This suggests
that employing S.1 and S.2 is a viable solution for CFP DG. Interestingly, RET-
LoRA demonstrates higher accuracy than RET-FT. This aligns with the implicit
results [35] that updating only a small number of parameters helps mitigate
catastrophic forgetting and overfitting.

Scalability in Diverse Datasets. Table 2 shows the accuracy on the APTOS-
Messidor and Glaucoma datasets. Overall, our method outperforms comparison
methods, including the accuracy of the fine-tuned RETFound. Achieving the best
accuracy on the APTOS-Messidor and Glaucoma datasets highlights that our
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Table 2. Classification accuracy on the APTOS-Messidor and Glaucoma dataset.

APTOS-Messidor Glaucoma
D1 D2 D3 |Avg.| D1 D2 D3 D4 |Avg.
SPSD-VIiT [9] |60.5 60.8 60.4|60.6|50.0 60.3 77.6 72.3|65.1
PLDG [31] [49.1 53.0 53.0|51.7|68.3 59.4 78.9 76.8|70.9
RET-FT [34] 45.7 54.7 56.7|52.4|66.3 42.2 61.2 59.7|57.4
RET-LP [34] 49.4 45.5 58.3|51.1(34.7 45.2 64.8 71.4|54.0
RET-LoRA [34]|56.1 56.0 62.8|58.3|50.5 42.0 64.8 73.1|57.6
Ours 58.3 65.2 66.8(63.4|79.2 70.9 78.3 70.9|74.8
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Fig. 2. The visualization of (a) original images X;, (b) standardized color images Xi,
(c) reconstructed images from RETFound X;’ w/ R., (d) X;’ with a self-reconstructed
image from the fine-tuned model, (e) X;" with a reconstructed image from ours, and
(f) blend images with transformed images Z; (ours). The disease labels for D1, D2, and
D4 are Normal, whereas the label for D3 is Mild-DR.

method is robust across various DG scenarios for CFP. Though SPSD-ViT [9]
and PLDG [31] were proposed for a dataset comprising APTOS-Messidor and
EyePACS [8], excluding EyePACS, which contains 88,702 images, significantly
degrades accuracy, indicating that previous approaches heavily rely on the Eye-
PACS dataset. Even in a DG scenario with a limited number of samples, our
approach successfully trains a robust classifier, demonstrating its consistent ap-
plicability.

Ablation Studies. Fig. 2 presents the visualization of reconstructed and trans-
formed images. As shown in Fig. 2 (b) standardized color images X, Eq. 1
reduces discrepancies between domains, as darker images become brighter (D2,
D4) and brighter images become darker (D1, D3). In Fig. 2 (c¢) reconstructed
images from RETFound X;’ w/ R., the quality of the reconstructed image is very
poor, indicating that the encountered domain shift significantly impacts the re-
construction performance. Comparing (d) the self-reconstructed image from the
fine-tuned mode X;" and (e) X;" with a reconstructed image from ours in Fig. 2
(d) preserves the original texture, while (e) presents a more visually consistent
result. However, (f) the blend image Z; (ours) maintains the content of the input
image while providing a consistent result. Furthermore, the stable reconstruc-
tion of D4 in Fig. 2 demonstrates that the proposed method performs robustly
even under extreme conditions. This indicates that our approach is more effec-
tive in obtaining domain-invariant images, promoting better joint representation
learning.
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Table 3. Classification accuracy on the 4DR dataset with various transformed images
for joint representation, i.e., X; ®I'm.. X; indicates an original image, and X; indicates
a standardized color image. X;’ indicates a transformed image, Z; indicates a blend
image, and Z; w/ R. indicates a blend image with a reconstructed image from RET-
Found.

X"’i’élm' S; Sf 5]?14 4]?23 6237 6240 ?;’gé X, ®Im.|S152] DI D2 D3 D4 |Avg.
¢ A4 405 0.1 65.0158. X, |v  |62.843.275.9665/62.1
X, | v v [60.5 455 77.2 68.2(62.8 >

X v 58.5 45.1 74.7 62.5/60.2

Zi | v v |62.2 48.8 80.7 68.3/65.0 :
e o T e o X' | v 55.6 48.1 73.0 62.6|59.8
% c5s 493 768 297|203 Zi | v 62.4 42.5 80.1 63.2/62.1
Z; w/ R. 59.0 30.4 747 62.0|500 2L/ R v |60.1 47.4 76.0 61.6/61.3

Table 3 presents the ablation results for transformed image on the 4DR
dataset. The ablation results on Xi, X,', and Z; with both S.1 & S.2 demonstrate
that the transformed image is beneficial than applying Eq. 1, as the accuracies
of X;' and Z; are higher than Xl This is attributed to the transformed images
providing more consistent results compared to applying Eq. 1, as shown in Fig.
2. Additionally, the blend image Z; demonstrates higher accuracy than using the
transformed images X;" alone, supporting the effectiveness of the blending ap-
proach. To investigate whether using transformed images without our approach
can still achieve high accuracy. The results, excluding S.1 and S.2, indicate that
utilizing only the original images X; achieves the highest accuracy, suggesting
that employing transformed images without our approach does not enhance ac-
curacy. Also, similar results are shown with S.1, as neither X;’ nor Z; exceed
the accuracy of X;. Lastly, the accuracy of with S.2 (Z; w/ R.) is higher than
with nothing (Z; w/ R.), indicating that using joint representation with cross-
attention is beneficial even without employing the fine-tuned encoder from S.1.
Despite RETFound’s poor reconstruction capability, Z; w/ R. achieves accuracy
comparable to X;, as the original image is blended into Z;. In summary, we
confirmed that the blended transformed image, i.e., Z;, is the most appropriate
approach for joint representation learning, i.e., with S.2. Additionally, fine-tuning
to obtain domain-invariant images, i.e., with S.1, significantly improves the ro-
bustness of the fine-tuned encoder. These results demonstrate that both stages
are crucial and synergistically improve accuracy when combined.

5 Conclusion

We introduced a novel approach for improving DG in DR classification by em-
ploying MIM with a standardized space. This approach standardizes color rep-
resentation across domains, allowing our model to learn robust and domain-
invariant features. Additionally, we leveraged cross-attention between the origi-
nal and transformed images to enhance DG capability by integrating complemen-
tary information from both. Our method demonstrated superior DG accuracy
on three CFP datasets, significantly outperforming existing state-of-the-art DG
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methods. This work highlights a promising pathway for advancing DG in medical
image classification, particularly in applications requiring consistent performance
across diverse clinical settings.
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