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Abstract. Radiology report generation (RRG) is an emerging field that
aims to automatically generate free-text clinical descriptions of radio-
graphic images, incorporating temporal disease progression. However,
existing methods rely on coarse-grained image representations and lack
explicit mechanisms to integrate patients’ historical information. To ad-
dress these limitations, we propose a novel framework Diff-RRG that in-
troduces longitudinal disease-wise patch Difference as guidance for large
language model (LLM)-based Radiology Report Generation, aligning
with the real-world diagnostic process. Our approach extracts disease-
wise difference maps to identify fine-grained patches associated with spe-
cific diseases and to capture the difference between consecutive radio-
graphs. Such information is fed into the LLM to provide direct guidance
on disease progression. Accordingly, the resulting generated reports can
be explained by pinpointing the related regions in the image, thereby
enhancing explainability. In the extensive experiments, we have achieved
state-of-the-art performance in most of the natural language generation
and clinical efficacy metrics on the Longitudinal-MIMIC dataset. Our
code is available at https://github.com/ku-milab/Diff-RRG.
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1 Introduction

Automated radiology report generation (RRG) refers to synthesizing free-text
clinical descriptions of radiographic images, aiming to streamline radiologists’
workflow by reducing labor-intensive, repetitive, and error-prone tasks. In clin-
ical practice, radiologists document disease presence and progression by com-
paring current findings with previous records, often utilizing comparative lan-
guage such as “improving atelectasis and decreasing pleural effusion.” Despite the
inherently comparative nature of radiology reports, most existing RRG mod-
els [2,3,10,15,16] rely solely on single input images, disregarding the patient’s
⋆ Corresponding author.
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historical information. This limitation not only increases the risk of hallucina-
tions but also restricts the model from incorporating the comprehensive clinical
context available to radiologists, thereby precipitating a substantial knowledge
gap between automated systems and diagnostic experts [8].

To overcome the limitations of traditional RRG models, recent studies [8,14,18]
have focused on leveraging longitudinal data, incorporating current and previous
images and reports. These efforts strive to produce context-aware reports, a crit-
ical aspect in monitoring patient’s medical conditions over time. For instance,
Prefilling [18] integrates multi-modal data through a cross-attention module and
a hierarchical memory-driven transformer, effectively reducing hallucinations by
incorporating historical information. HERGen [14] employs a group causal trans-
former to process entire patient-level images and utilizes auxiliary contrastive
alignment, thereby narrowing the knowledge gap between the model and di-
agnostic experts. HC-LLM [8] introduces temporal constraints to differentiate
between consistent (e.g., time-shared) and evolving (e.g., time-specific) disease
patterns, which in turn indirectly guides the large language model (LLM). How-
ever, despite these significant advancements, they still face two major shortcom-
ings: 1) dependence on coarse-grained image representations, which struggle to
capture disease-specific fine-grained pathological details for precise disease anal-
ysis, and 2) lack of direct guidance for disease progression, thus limiting the
ability to detect critical clinical changes.

To address these challenges, we propose a novel framework Diff-RRG that
introduces longitudinal disease-wise patch Difference as guidance for LLM-based
Radiology Report Generation. Our method comprises two key components:
Disease-wise Difference Map extraction (DDM) and Disease Progression Guid-
ance (DPG). The DDM generates disease-wise difference maps by analyzing dif-
ferences between current and prior chest X-ray images at the patch level, allowing
the model to capture fine-grained spatial details in disease-related regions. These
detailed difference maps serve as the foundation for the DPG, which provides
explicit temporal guidance for report generation. By inferring disease progres-
sion states, the DPG ensures that the generated reports preserve clinical context
while accurately capturing the temporal dynamics of disease evolution. Together,
these components enable Diff-RRG to bridge the gap between automated sys-
tems and radiologists, closely aligning with the radiologist’s workflow, which
prioritizes the identification of progressing pathological lesions. Experimental
results on the Longitudinal-MIMIC dataset demonstrate superior performance
in both linguistic quality and clinical accuracy while improving explainability by
visualizing disease-relevant regions.

Our contributions are summarized as follows:

1. We propose a novel longitudinal RRG framework, named Diff-RRG, designed
to align with the diagnostic process in real clinical scenarios by generating
fine-grained and progression-focused reports.

2. We devise the DDM module that extracts disease-wise difference maps, en-
abling the model to capture localized pathological variations.
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Fig. 1. An overview of our proposed Diff-RRG framework.

3. We introduce the DPG module, which provides explicit disease progression
guidance, allowing the model to generate clinically meaningful reports.

4. Experiments on the Longitudinal-MIMIC dataset demonstrate the effective-
ness of our proposed method, and the visualization of disease-related patches
enhances explainability by highlighting localized pathological changes.

2 Method

In this section, we introduce the overall framework of our proposed model and
the two modules, namely DDM and DPG, and then outline the radiology report
generation process.

2.1 Overall Framework

The overall framework of Diff-RRG is illustrated in Fig. 1. The primary objective
of our proposed method is to effectively capture the disease progression across
serial chest X-ray images and generate a clinically accurate diagnostic report
considering the historical information. To achieve this, we utilize a patient’s
prior image, prior report, and current image to generate a corresponding current
report that closely resembles the ground truth report. The report generation
process is formulated as follows:

R̂curr := Diff-RRG(Icurr, Iprior,Rprior), (1)

where Icurr, Iprior ∈ RC×H×W denote the current and prior chest X-ray images,
respectively, while Rprior represents the prior radiology report and R̂curr refers
to the predicted current report.
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2.2 Disease-wise Difference Map Extraction (DDM)

Accurately identifying disease progression in radiology requires capturing fine-
grained pathological changes rather than relying solely on global image features.
Therefore, we design the DDM to extract a difference map by comparing ra-
diographic images taken at different time points, enabling patch-level analysis
of disease evolution. The DDM consists of an image encoder, text encoder, and
disease-wise patch selection. Specifically, we adopt a pre-trained CLIP [12]-based
model for image and text encoders to extract aligned representations of medical
images and disease texts.

Image Encoder As a robust image feature extractor, the image encoder cap-
tures fine-grained visual patterns crucial for disease identification and progres-
sion analysis. Given an input X-ray image I (both current and prior), the image
encoder fie(·) extracts patch-wise feature embeddings, producing V = fie(I),
where V ∈ Rp×d denotes the patch-wise visual representations, p denotes the
number of patches, and d corresponds to the size of the embedding dimension.

Text Encoder Serving as a medical terminology feature representation ex-
tractor, the text encoder fte(·) encodes the pre-defined disease codebook D =
{d1, d2, . . . , dn}, which comprises the names of n diseases. The encoder outputs
the disease embedding C = fte(D), where C ∈ Rn×d is the corresponding text
embedding matrix.

Disease-wise Patch Selection To quantify the association between disease
categories and image patches, we compute the similarity matrix S ∈ Rn×p be-
tween the patch-wise visual representation V and the disease embedding matrix
C, as follows [17]. Subsequently, we utilize the Gumbel-Softmax [4] to dynami-
cally select the most relevant patches for each disease. Consequently, the number
of selected patches varies across patients and diseases.

We construct a mask matrix M ∈ Rn×p, where each element is set to 1 if the
corresponding value in the Gumbel-Softmax output exceeds a threshold δ, and
0 otherwise:

Mi,j = 1(Gumbel-Softmax((Si,j) > δ)), (2)

where 1(·) is the indicator function, i corresponds to the index of the disease
codebook, and j denotes the index of image patches. The mask M is then applied
to the patch embedding V via matrix multiplication, ensuring that only the
selected patches contribute to the final disease-wise representation. Given that
the number of selected patches varies, we compute the mean of the retained
patch embeddings to obtain a fixed-dimensional representation for each disease:

F = (M ·V)⊙ s−1 +Epos, s.t. si =
∑

j Mi,j (3)

where F ∈ Rn×d represents disease-wise selected patch embeddings, Epos ∈ Rn×d

is the positional encoding for each disease, ⊙ denotes element-wise multiplica-
tion, and s−1 is the reciprocal of vector s, broadcasted to match the dimensions
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of M ·V. The computation is performed only for diseases with at least one se-
lected patch (si ̸= 0), while others are ignored. At this stage, the selected patches
correspond to potential regions where each disease may manifest. This highlights
the model’s attention to pathological regions, enhancing explainability.

The process is identically applied to both the current and prior images, ulti-
mately yielding the respective representations Fcurr,Fprior. Finally, the disease-
wise difference map D ∈ Rn×d is computed as:

D = Fcurr − Fprior. (4)

2.3 Disease Progression Guidance (DPG)

Building upon the extracted disease-wise difference map, DPG performs classi-
fication to guide the large language model (LLM) by providing explicit disease
progression information. This module comprises disease progression label con-
struction and disease progression classification.

Disease Progression Classification To classifiy disease progression, we first
construct disease progression labels yk to encode changes in each disease by
comparing prior and current images derived from ground truth disease annota-
tions. Each disease is classified into one of three progression states: “worsening”,
“stable”, and “improving”. Additionally, if a disease does not have any selected
patches in either prior or current images (i.e., si = 0), it is excluded from clas-
sification and assigned an “N/A” label.

The disease-wise difference map D is fed into a progression classifier, which
predicts a disease progression label for each disease. The classification loss Lcls
is optimized using a cross-entropy loss function as follows:

Lcls = −
n∑

k=1

yk log(ŷk), (5)

where ŷk denotes the predicted probability distribution for k-th disease.
The predicted disease progression labels are then combined with the corre-

sponding disease names to form a progression prompt Pprog, which serves as
explicit guidance for the text decoder.

2.4 Radiology Report Generation

With the direct progression guidance, our model integrates the current image
representation and historical information from the prior report. For report gener-
ation, we leverage an LLM, inspired by its remarkable ability to generate medical
reports and effectively capture the temporal context [8,15].

The report generation process follows an autoregressive formulation, where
the language modeling loss Lgen is defined as the summation of the negative
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log-likelihood of each token rt:

Lgen = −
T∑

t=1

log p(rt|r1, . . . , rt−1,Pinst,Vcurr,Rprior,Pprog). (6)

Here, Pinst refers to the instruction prompt, Vcurr represents the current image
feature embeddings, and T denotes the total number of generated tokens.

Finally, the total training objective of the model is:

Ltotal = Lgen + λLcls, (7)

where λ denotes the balancing coefficient. By combining the disease progression
classification loss with the report generation loss, our approach ensures that the
generated report accurately reflects disease progression in serial radiographs.

3 Experiments and Results

Dataset and Evaluation Metrics We utilize the publicly available Longitudi-
nal-MIMIC dataset [18], derived from the MIMIC-CXR dataset [5], to train and
evaluate our model. The dataset includes 26,625 patients and a total of 94,169
samples with at least two visit records. Each sample consists of the current image,
the current report, the previous image, and the previous report. We follow the
official split for dividing training, validation, and test sets.

To assess the quality of our generated reports, we evaluate both Natural
Language Generation (NLG) and Clinical Efficacy (CE) metrics. For NLG, we
use BLEU-n [11], METEOR [1], and ROUGE-L [7]. For CE, we compute micro-
averaged Precision, Recall, and F1-score utilizing the CheXbert labeler [13].

Implementation Details We employ pre-trained BiomedCLIP [17] as both
the image and text encoders and BioMistral-7B [6] as the text decoder. In the
Gumbel-Softmax function, the temperature τ and threshold δ are set to 0.3 and
0.2, respectively. The coefficient λ is set to 0.1, and we leverage the AdamW [9]
optimizer with an initial learning rate of 1e-4. The model was trained for 5
epochs with a mini-batch size of 6 on a single NVIDIA RTX A6000 48GB GPU.

Quantitative Results Table 1 presents a quantitative evaluation of our model
against existing models using NLG and CE metrics. To begin with, we compare
our method against conventional methods using a single image as an input, in-
cluding R2Gen [3], R2GenCMN [2], CvT2DistilGPT2 [10], R2GenGPT [15],
and GMoD [16]. Our model consistently outperforms all single-input approaches
in both NLG and CE metrics, and these results substantiate the importance of
utilizing temporal information to enhance generated reports’ linguistic quality
and clinical accuracy. Furthermore, we compare our model with recent longi-
tudinal methods, Prefilling [18], HERGen [14], and HC-LLM [8], which utilize
the same longitudinal data. Our approach achieves superior performance in most
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Table 1. Evaluation on the Longitudinal MIMIC-CXR dataset. † indicates the results
are cited from the original papers.

Model NLG metrics CE metrics
BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE METEOR Precision Recall F1-Score

Single Input
R2Gen [3] 0.308 0.190 0.126 0.089 0.266 0.124 0.457 0.290 0.355

R2GenCMN [2] 0.328 0.203 0.135 0.096 0.273 0.133 0.512 0.359 0.422
CvT2DistilGPT2 [10] 0.363 0.225 0.151 0.109 0.266 0.138 0.485 0.310 0.378

R2GenGPT [15] 0.345 0.202 0.128 0.087 0.240 0.125 0.331 0.253 0.287
GMoD [16] 0.378 0.234 0.155 0.107 0.276 0.162 0.496 0.429 0.460

Longitudinal Input
Prefilling [18] 0.343 0.210 0.141 0.100 0.274 0.137 0.506 0.364 0.423
HERGen† [14] 0.389 0.242 0.163 0.117 0.282 0.155 0.421 0.289 0.295
HC-LLM [8] 0.404 0.247 0.164 0.116 0.271 0.163 0.488 0.415 0.448

Ours
Baseline 0.390 0.231 0.150 0.104 0.262 0.146 0.434 0.353 0.389

+ Prior Image, Report 0.397 0.242 0.160 0.113 0.272 0.161 0.510 0.407 0.453
w/ DDM 0.402 0.248 0.167 0.119 0.275 0.163 0.518 0.429 0.469
w/ DPG 0.401 0.246 0.165 0.117 0.272 0.161 0.516 0.414 0.459

Diff-RRG 0.405 0.251 0.169 0.120 0.276 0.164 0.528 0.430 0.474

Fig. 2. Qualitative analysis of the generated reports. The red text denotes comparative
statements between prior and current images, while the colored highlights indicate
descriptions of distinct disease entities.

cases, demonstrating the effectiveness in capturing disease progression and accu-
rately reflecting temporal context. These results further validate the capability of
our method to generate clinically meaningful reports that align with real-world
radiological assessments.

Qualitative Results To qualitatively assess the effectiveness of our proposed
method, we compare the generated reports with the ground truth and outputs
from the HC-LLM [8], as shown in Fig. 2. In two cases, our method not only
accurately captures the historical aspects of the patient’s condition but also
provides a detailed and correct description of the presence or absence of diseases.
In contrast, HC-LLM fails to mention certain diseases or provide comparative
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Fig. 3. Visualization of disease-relevant patches extracted by the DDM module. The
colored bounding boxes in the X-ray images represent the most informative patches
identified by our model, while the corresponding highlighted texts in the reports indi-
cate disease-relevant descriptions.

descriptions between the prior and current images. These results clearly illustrate
the superior performance of our model, which effectively integrates historical
data to offer comprehensive and accurate disease descriptions, improving the
overall diagnostic quality.

Ablation Study Table 1 shows an ablation study of each component. First,
we implement a baseline model with a BiomedCLIP [17] image encoder and a
BioMistral-7B [6] text decoder, processing a single input image. Next, we com-
pare this baseline against a model incorporating longitudinal multi-modal inputs
such as prior images and reports that improve performance, demonstrating the
benefits of historical context in report generation. To assess individual contribu-
tions, we evaluate the DDM and DPG modules separately. The DDM module
indicates a substantial improvement in both NLG and CE metrics, underscoring
the importance of extracting fine-grained difference maps. Similarly, integrating
the DPG module yields improvements across most evaluation metrics, generating
progression-aware reports. Overall, our proposed Diff-RRG model achieves the
highest NLG and CE performance, validating their complementary effectiveness
between components.

Model Explainability To enhance the explainability of our proposed method,
we visualize the disease-wise extracted patches in the DDM module, as illus-
trated in Fig. 3. The extracted patches effectively identify disease-relevant re-
gions across consecutive images, demonstrating the model’s ability to track dis-
ease progression at a fine-grained level. Notably, our model consistently identifies
pathological regions even when the disease manifestation shifts in location. Fur-
thermore, the highlighted texts in the reports illustrate how these extracted
visual features directly contribute to generating disease-relevant descriptions,
establishing a clear connection between the visual findings and textual report-
ing. Such explainability further supports the clinical utility of our framework by
providing transparent and interpretable predictions.
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4 Conclusion

In this paper, we devise a novel radiology report generation framework, named
Diff-RRG, designed to capture disease progression by leveraging longitudinal
multi-modal information. We further propose the DDM and DPG modules to ex-
tract disease-wise difference maps and provide explicit disease progression guid-
ance to the LLM decoder. Furthermore, the identified disease-related patches en-
hance the explainability of the model. Experimental results on the Longitudinal-
MIMIC dataset demonstrate the superiority of our approach, bridging the gap
between automated report generation and real-world clinical processes. This en-
ables the generation of clinically meaningful reports, contributing to improved
clinical decision-making.
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