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Abstract. In intensive care units (ICUs), patients with complex clinical
conditions require vigilant monitoring and prompt interventions. Chest
X-rays (CXRs) are a vital diagnostic tool, providing insights into clinical
trajectories, but their irregular acquisition limits their utility. Existing
tools for CXR interpretation are constrained by cross-sectional analy-
sis, failing to capture temporal dynamics. To address this, we introduce
CXR-TFT, a novel multi-modal framework that integrates temporally
sparse CXR imaging and radiology reports with high-frequency clini-
cal data—such as vital signs, laboratory values, and respiratory flow
sheets—to predict the trajectory of CXR findings in critically ill patients.
CXR-TFT leverages latent embeddings from a vision encoder that are
temporally aligned with hourly clinical data through interpolation. A
transformer is trained to predict CXR embeddings at each hour, con-
ditioned on previous CXR embeddings and clinical measurements. In
a retrospective study of 20,000 ICU patients, CXR-TFT demonstrated
95% accuracy in predicting abnormal CXR findings 12 hours before they
became radiographically evident, indicating that clinical data contains
valuable respiratory state progression information. By providing distinc-
tive temporal resolution in prognostic CXR analysis, CXR-TFT offers
actionable predictions with the potential to improve the management of
time-sensitive critical conditions, where early intervention is crucial but
timely diagnosis is challenging.

Keywords: Clinical Trajectories - Multi-modal Machine Learning - Ir-

regularly Sampled Time Series

1 Introduction

Intensive Care Unit (ICU) patients generally have complex and diverse clinical
pathologies that require careful monitoring and timely intervention. Portable
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Fig.1: The CXR-TFT Framework.(a) Sparsely recorded CXR images and ir-
regularly sampled clinical measurements are concatenated at the input to the
transformer model, (b) A Multi-layer Perceptron is trained to detect radiographic
findings vision encoder embeddings, with ground truth supervision from radiol-
ogy reports, (¢) CXR-TFT estimates future CXR embeddings, which can predict
the likelihood of radiographic findings before they are seen on subsequent CXRs.

chest radiographs (CXRs) are the most requested ICU imaging for many rea-
sons: they are rapid to obtain, can be done at the bedside (critical for unsta-
ble patients), are used to evaluate support devices and lines, and can provide
important diagnostic information, particularly for pulmonary pathology [20].
Many conditions are first diagnosed with CXRs, such as consolidation indicative
of pneumonia, new pleural effusions in the setting of volume overload, or pul-
monary edema [16]. These arise as complications and carry significant morbidity
and mortality, making early recognition and intervention critical [3/14].

Many contemporary machine learning models that are applied in the ICU
setting—for tasks like cohort phenotyping or outcome prediction—either only
leverage radiology reads of CXRs or do not use imaging data altogether [ITI19].
However, CXRs contain valuable information that influences clinical decision
making, and radiology reports are often delayed and may not convey all infor-
mation pertinent to the patient’s comprehensive health state. Independently,
there has been significant research on using machine learning for CXR interpre-
tation [1] as well as CXR generation[4]. Recent foundational medical imaging
models [255122] have successfully learned rich CXR representations, with lon-
gitudinal approaches outperforming cross-sectional analysis [92IT5]. However,
there is a crucial need to better integrate longitudinal imaging information with
other modalities of ICU data for building better clinical decision support tools.

In this study, we leverage CXR foundational models to predict ICU pa-
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tient trajectories, hypothesizing that the most likely CXR could be estimated
at any point during a patient’s ICU stay using the previously recorded CXR
and all past clinical measurements. To accomplish this, we develop CXR-TFT
(Chest X-ray Temporal Fusion Transformer), a transformer-based model that
integrates hourly clinical measurements—such as lab values, vital signs, and ven-
tilator parameters—with previous CXR embeddings to predict the most prob-
able CXR representation in the latent space. The latent embedding space of a
vision-language model is continuous|[I7] and imbued with semantic meaning [25].
Operating in this space allows for interpolation between embeddings, helping us
overcome the challenge of temporally aligning information from multi-modal,
irregularly-sampled time series and forming the key technical contribution of
this work. Predicting future pulmonary pathology could potentially shorten the
time to clinical intervention and improve clinical decision support.

2 Methods

2.1 The Proposed Framework

A high-level overview of our framework is shown in Figure At any time
t, during a patient’s stay in the ICU, given a sequence of clinical measure-
ments F = {F,,,F,,,F,..., Fy,_,}, where Fy, = [f}, f?,..., fI'] is a vector of
n clinical features under consideration, and given a sequence of sparsely sam-
pled, previously recorded CXR images I? = {If ,(e),I{ ..., I{  } where I} =
encoderyision(CXRy) is the latent embedding representation of a CXR image
obtained via a pretrained vision encoder, and (e) represents time points with
no recorded CXR scans, the proposed model learns to predict IZ, the estimated
CXR embedding at time t;,. The target output sequence I7 = {L;,, ItTO, ItTZ...7 ItTk,l
used to train the model is obtained by linear interpolation in the embedding
space between two recorded CXRs. Concretely, if a CXR scan was performed at
time tx,, and the next CXR scan was performed at tz,, then the target sequence

is defined by Equation
[gl = encodervision(CXRtkl )7 if k/ _ kl

I, = 5,; :ITencodervision(CXRtkz), if k' = ko (1)
Pt x (K = k) + 1L, ik <K <k

2.2 Dataset Preparation

This is a single-center retrospective cohort study at an academic institution.
Included were all adult patients admitted to any ICU between January 2015 to
December 2021 who had more than one CXR performed during their hospitaliza-
tion. A total of 17,690 patients met criteria, for which we extracted all single-view
anteroposterior (AP) frontal chest radiographic images and their corresponding
radiology reports. We also extracted demographic information and clinical mea-
surements like vitals, laboratory values, ventilator flowsheet information across
the entire ICU length of stay.
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2.3 Data Preprocessing

Clinical Measurements All clinical measurements from the Electronic Med-
ical Record (EMR) were organized into hourly bins. Multiple hourly recordings
were validated against physiologically possible bounds (determined through clin-
ician consultation), with out-of-range values discarded and the remaining val-
ues averaged. Numerical values were min-max normalized using healthy patient
reference ranges. Missing clinical measurements were handled with forward-fill
imputation. If no recorded value existed, missing values were imputed using the
median of the normal (healthy) range of values. Categorical variables (gender,
ICU type, etc.) were one-hot encoded. This processing resulted in a clinical fea-
ture vector Fy = [fL, f2, ..., f!] with n = 82.

Image Encoding BioMedCLIP [25], a vision language model trained to align
radiology reports with corresponding image embeddings, was used to extract
the latent space representation I;, € R5? of a chest X-ray image at time t;.
Data preceding the first recorded CXR and following the last recorded CXR was
excluded for training and evaluation. To facilitate training, missing values, (o)
in the previous CXR sequence I? = {I} ,(e),I} ..., I{  } were handled using
forward-fill imputation.

Radiology Reports Radiology reports provided supervision for training a
downstream classifier to predict radiological findings from image embeddings.
We derived 10 finding classes using the CheXPert labeler [12]: 'No Finding’,
"’Cardiomegaly’, 'Lung Opacity’, "TEdema’, ’Consolidation’, "Pneumonia’, ’Atelec-
tasis’, ’Pneumothorax’, 'Pleural Effusion’, and 'Pleural Other’.

2.4 Training CXR-TFT

The input data to the transformer model at time tz, X, = [F,?;,I,iT], was
a 594 x 1 vector formed by the concatenation of current clinical features and
the latent embedding of the previously recorded CXR. We trained an encoder-
decoder transformer model [21] with a pre-norm architecture, an initial learning
rate of 5e — 4, and the AdamW optimizer with a weight decay of 0.01. Gradient
clipping was used to prevent exploding gradients. The model was trained for 100
epochs with an early stopping patience of 10 epochs based on validation loss.
We used a batch size of 32 and a cosine learning rate scheduler with warmup
for the first 10% of training steps. To prevent overfitting, we applied dropout
with a rate of 0.1 throughout the network. The mean squared error (MSE) loss
between the target CXR embeddings and the decoder outputs was used as the
primary optimization objective. The code to the complete data processing and
training setup can be found at our [Github Repository|
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2.5 Classifier Regularization

We trained a lightweight multilayer perceptron (MLP) to predict key radio-
logical findings using labels from radiology reports (Section [2.
used BioMedCLIP vision encoder embeddings as input and was trained on the
MIMIC-CXR dataset [13] (over 200,000 CXR images with reports).

The cross-entropy loss between the target labels and the predicted labels
(obtained by passing the embeddings generated by the transformer through the
pretrained MLP) was added to the training objective (Equation . This reg-
ularization encourages predicted trajectories to accurately forecast abnormal
findings. For N training samples and C' classes radiological findings, each with
sequence length T; where ¢ € {0,1,..., N}, the training objective is given by
Equation [2| where y; ., = MLP(I]) and p; .; = MLP(I}), MLP is the frozen,
radiological-finding classifier, # are the parameters of our model. For this study,
C =10 and a = 0.5.

3

1 N
Luse(®) =5 > 7> (=) |1 ~ 17|

© (2)
> Wit 10g(Pict) + (1= yica)log(l = pics)]

E(Q) = (1 — OZ)LMSE(Q) + OéLBCE(Q)

3 Results on Predicting Radiographic Findings

The radiographic-findings classifier (Section was used to calculate the like-
lihood of abnormal findings in CXR embeddings generated by CXR-TFT. Fol-
lowing [I5], previously recorded CXR findings formed the baseline, highlighting
our model’s utility in predicting new developments. The accuracy, precision, and

Table 1: Model Performance Metrics Across Time Horizons

‘ Current Prediction ‘ Future Prediction
Finding ‘ Precision ‘ Recall ‘ Accuracy ‘ 12-hours in advance ‘ 24-hours in advance
M B M B M B Precision Recall Acc Precision Recall Acc
M B M B M B M B M B M B

No Finding 0.730 0.308|0.498 0.438]0.981 0.957|0.617 0.196|0.405 0.279 [0.976 0.948|0.528 0.157|0.328 0.220|0.973 0.945
Cardiomegaly |0.985 0.978|0.992 0.979{0.978 0.959|0.982 0.973]0.990 0.975|0.973 0.951(0.979 0.971|0.987 0.973|0.967 0.947
Lung Opacity |0.786 0.528|0.767 0.556(0.931 0.853|0.721 0.417]0.676 0.431|0.907 0.815(0.642 0.374|0.574 0.378|0.880 0.798
Edema 0.682 0.329|0.476 0.488]0.986 0.972]0.555 0.207|0.347 0.302|0.983 0.965|0.460 0.174|0.256 0.242{0.979 0.963
Consolidation |0.588 0.263|0.362 0.424{0.991 0.982|0.513 0.132]0.275 0.212|0.990 0.978(0.360 0.079|0.175 0.127|0.989 0.976
Pneumonia 0.703 0.368|0.478 0.488]0.985 0.971|0.615 0.233|0.365 0.304 |0.982 0.964 |0.522 0.188|0.280 0.237|0.979 0.961
Atelectasis 0.837 0.592|0.791 0.603|0.904 0.784|0.769 0.494|0.723 0.502 |0.869 0.731|0.700 0.453|0.651 0.459{0.833 0.709
Pneumothorax |0.667 0.247|0.506 0.393]0.985 0.964|0.569 0.126|0.378 0.191|0.981 0.955(0.439 0.102|0.257 0.146 |0.976 0.953
Pleural Effusion|0.874 0.655|0.846 0.705(0.905 0.771|0.830 0.582|0.780 0.620|0.869 0.715(0.779 0.551|0.712 0.576|0.829 0.688
Pleural Other |0.579 0.256|0.488 0.388{0.989 0.979|0.490 0.117]0.353 0.170|0.987 0.973|0.344 0.078|0.211 0.106 |0.984 0.972

Average |0.743 0.452(0.620 0.546/0.964 0.919|0.666 0.348|0.529 0.399|0.952 0.900/0.575 0.313|0.443 0.346/0.939 0.891

Note: M = CXR-TFT Model, B = Baseline, Acc = Accuracy.
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(b) Precision Recall Curves

Fig. 2: Performance comparison of detecting radiographic findings on embeddings
predicted by the transformer model, and baseline of the previously recorded
CXR. Figure (a) denotes the prevalence of each class in the test set.

recall are reported in Table [T} The “Current Prediction” results evaluate model
performance by comparing predicted labels at each hour, with labels derived from
interpolated target CXR trajectories. The “Future Prediction” results assess the
model by comparing predicted labels with ground truth labels from radiology re-
ports corresponding to the subsequent CXR, for time-points with a recorded CXR
and without a prior CXR recorded within the lead time frame. The Receiver-
Operating Characteristic Curves (ROC) and Precision-Recall Curves (PRC) for
“Current Predictions* are shown in Figure [2] and changes in the area under the
ROC curves (AUROC) for varying prediction lead-times is shown in Figure

4 Discussions

With CXR-TFT, we demonstrate that modeling CXR trajectories in the vision-
language latent space enables temporally-aligned integration of CXR and clinical
data, accurately predicting abnormal findings 12-24 hours before they appear on
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Fig. 3: Temporal AUROC trends for early prediction of radiological findings with
prediction horizon measured in hours before the next recorded CXR.

subsequent CXRs. This has critical clinical implications—predicting the devel-
opement of abnormal pathology can prompt early diagnostic imaging and sub-
sequent clinical intervention. For example, predicting pneumonia before overt
clinical indication may enable earlier antibiotics and reduced complications.

Most previous radiological trajectory research is limited to broad categoriza-
tions (worsening, stable, improving) [8] or predicting severity outcomes (mor-
tality, ICU readmission) [7], offering limited clinical utility as their predictions
rarely influence real-time patient management. In contrast, our approach gen-
erates actionable, bedside predictions reflecting important physiological changes
at a higher temporal resolution than the relatively sparse chest X-rays alone. Re-
cent research on multi-modal CXR models [I0/24] train unimodal encoders for
static tasks like phenotyping or mortality prediction, while CXR-TFT predicts
hourly latent embeddings in a seq-to-seq manner, addressing the temporal align-
ment challenge. Other studies address data asynchronicity by generating CXRs
to fill in temporal gaps [23]. The closest work to our research is the diffusion-
based CXR generation model proposed by Kyung et al. [I5], which is conditioned
on the most recent CXR and clinical data. CXR-TFT diverges in three key as-
pects: (1) predicting future CXRs in the latent embedding space rather than
pixel space, improving efficiency while eliminating hallucination risks; (2) in-
corporating comprehensive contextual information from clinical measurements
and previous CXR embeddings from admission until prediction time; (3) achiev-
ing finer-grained monitoring capabilities by hourly temporal alignment between
CXR embeddings and clinical measurements.

This study has limitations. Since clinical studies show that restrictive, clinically-
indicated imaging achieves similar outcomes to daily CXRs [20/6], and most
ICUs don’t perform routine daily CXRs, assessing direct clinical impact requires
prospective study. Next, we used a single institution for our cohort, which limits
the generalization of our findings. Lastly, our work focuses on a single approach
to the sequence-to-sequence task, but could be improved by exploring alterna-
tive model architectures, different multi-modal fusion strategies [I§], and more
sophisticated embedding interpolation techniques.
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5 Conclusion

This work demonstrates that multimodal models using clinical time-series and
pretrained vision-language embeddings can successfully predict future radiolog-
ical findings. Future directions of research include further retrospective and
prospective clinical studies to validate findings, exploring different model ar-
chitectures, and expansion to include other data and imaging modalities.
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