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Abstract. HoloPointNet presents a novel deep-learning framework for
3D point cloud holography. Generally, computer generated holography
(CGH) methods typically rely on stacked 2D slices and suffer from in-
efficiencies. These 2D slices often contain empty regions in natural 3D
scenes or are intentionally sparse in applications like holographic optoge-
netics. This results in excessive memory consumption and increased pro-
cessing latency. In contrast, HoloPointNet directly processes 3D point
cloud data using a concatenation-based feature extractor, followed by
hierarchical upsampling and wavefront reconstruction modules, elimi-
nating redundant spatial regions and improving efficiency. This design
allows for the direct mapping of point cloud data to phase modulations
for spatial light modulators (SLMs). By employing a structured convo-
lutional feature transformation pipeline, HoloPointNet enables hierar-
chical refinement of spatial embeddings, enhancing feature encoding ac-
curacy. HoloPointNet offers the capability to generate multiplane holo-
grams, effectively addressing the complexities of 3D volumetric data.
This capability, combined with fast inference times, enables real-time
holography for applications such as optogenetics. The code is available
at https://github.com/AnkitAmrutkar /HoloPointNet.git
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1 Introduction

Computer-generated holography (CGH) is a computational technique that ma-
nipulates a coherent wavefront to create custom illumination patterns. At its
core, CGH involves solving the phase retrieval problem, an inverse, non-convex,
and ill-posed task of estimating phase information from intensity measurements.
This enables precise optical control and finds applications in various fields, in-
cluding augmented reality, 3D displays [I6/325], systems neuroscience [20/8I2312],

¥ These authors contributed equally to this work.


https://github.com/AnkitAmrutkar/HoloPointNet.git

2 A. Amrutkar et al.

and optical trapping [I7/T36II8]. Several iterative and deep learning-based meth-
ods have been developed to solve the phase retrieval [7] problem. Traditional
iterative approaches, such as the Gerchberg-Saxton algorithm [14] and its vari-
ants [31/5], as well as more advanced techniques like gradient descent [33] or
Wirtinger derivatives [4], are often computationally expensive. Non-iterative
methods [932] also exist for hologram generation. In contrast, deep learning ap-
proaches [2I3428/TTI30124] have gained prominence in CGH due to their faster
inference times and high image fidelity, leveraging neural network architectures
that directly infer phase masks from target intensity distributions.

Most existing neural network architectures for CGH rely on grid-based repre-
sentations of images. However, these grid-based 3D representations are computa-
tionally inefficient and significantly hinder their applicability to real-time CGH.
Many current methods approximate volumetric intensity patterns as stacks of
2D planes, which is computationally costly and redundant in scenarios where the
illumination pattern is sparse. For example, in holographic optogenetics [8/12],
only a small portion of the 3D volume is relevant, as specific neurons must be
targeted for activation or inhibition. Using dense 2D stacks increases memory
consumption and inference times.

To address these limitations, point cloud-based representations offer an effi-
cient alternative. Unlike grid-based volumetric data, point clouds encode only the
essential target locations, significantly reducing computational overhead. This
approach is particularly suited for the sparsity constraints inherent in optoge-
netics, where precise targeting is critical and minimizing off-target illumination
is essential. DeepCGH2.0 [I0] is a notable effort in implementing point cloud-
based CGH. It maps point clouds to optimal phase modulation, significantly
reducing memory requirements compared to traditional 2D slicing. However, it
still faces challenges in approximating 3D holograms. In contrast, we propose
a neural network architecture that maps point clouds to phase encodings for
multi-plane holography. Our method is computationally efficient and adaptable
for real-time applications. The main contributions of this paper are as follows:

1. HoloPointNet: We propose a deep learning framework and evaluate it on
a biologically inspired dataset designed to reflect typical CGH applications
targeting custom sparse cell-sized ensembles. It processes point cloud rep-
resentations using a concatenation-based feature extractor, followed by hi-
erarchical upsampling and a wavefront reconstruction module to efficiently
approximate the phase at the target plane for holographic reconstruction.

2. Multiplane Holography with Real-Time Inference: HoloPointNet generates
multiplane holograms with fast inference, enabling real-time applications like
holographic optogenetics.

2 Method

2.1 Preliminaries

Forward Models: We structure the network architecture using a physics-
inspired approach [29], leveraging a physics-based forward model to guide the
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network towards an optimal solution. Specifically, we employ free-space propaga-
tion as the forward model, implemented using the band-limited angular spectrum
method.[2II5]. Free space propagation: In this setup, no diffractive element is
placed between the SLM and the hologram plane. Light propagation is simulated
using the band-limited angular spectrum method [22]. Here, the forward model
hyperparameters (FMH) are the wavelength of light ()\), propagation distance
(d), SLM pixel-resolution (M), pixel-pitch (Az) i.e. FMH = (\, Az, M, d).[f]
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2.2 HoloPointNet

We introduce HoloPointNet (H¥,) (Fig. 1)), a deep learning framework for phase
retrieval in CGH. The network approximates the wavefront (E*,(x,y)), at the
target plane (TP) based on a given 3D point cloud that represents the desired
holographic structure. This estimated wavefront is then backward propagated
through the inverse system ¥~! to the SLM plane, where laser amplitude con-
straints are applied. The constrained wavefront is subsequently forward prop-
agated via ¥ to the target plane, where a loss function evaluates the discrep-
ancy between the reconstructed wavefront and the rendered point cloud which
is rendered using a custom-built pipeline ({2). To achieve 3D reconstruction
of the wavefront, we employ the forward model given in to propagate
the estimated wavefront before evaluating the loss function. Here the loss func-
tion is defined as a weighted combination of mean squared error and accuracy
The overall unsupervised training pipeline is described by [Eq. 2] and in-
spired by the approaches presented in [TIJTO/I]. The HoloPointNet architecture
(H¥.), which estimates the wavefront (E¥,)(-), consists of three key modules:
A Concatenation-Based Feature Extractor (©(-)) (CBFE), Hierarchical Upsam-
pling (A(+)) (HU), and a Wavefront Reconstruction Module (W(+)) (WRM). Each
module plays a crucial role in processing the input point cloud and generating a
high-resolution phase distribution. The core transformation in HoloPointNet is
expressed as:

Efp(xy) = Hip(P) = Wo A0 O(P) (2a)

5 Notation follows [TI21].
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HoloPointNet takes as input a set of N points, P = (p;|j =1,...,N) €
RN*5 where each point p; is defined by its spatial coordinates (z,y, z) and point
properties (r,4), where r and ¢ represent the radius and intensity of the circular
points, respectively. We use circular points to mimic cell-sized ensembles.

The O(-) module applies shared multilayer perceptions (MLPs) implemented
as 1D convolutions with batch normalization and ReLLU activation. These shared
weights extract per-point features efficiently across the point cloud. Features
from different layers are concatenated to capture multi-scale information, with
an early-stage concatenation merging low-level features and a later-stage con-
catenation integrating deeper representations. The resulting feature map is then
further processed through convolutional layers before a global max-pooling oper-
ation aggregates the point features into a structured latent representation using
fully connected layer. The ©(-) module is primarily inspired by the architectures
in [26/27119).

The A(-) module refines the feature map by expanding the channel dimension
while preserving spatial resolution through concatenated convolutional layers.
This is followed by residual upsampling blocks, which progressively increase the
spatial resolution using a combination of standard convolutions and transposed
convolutions.

The W(-) module reduces the channel dimensions to reconstruct both the
magnitude and phase of the wavefront (E¥,(x,y)) at the target plane. The
reconstructed wavefront at the target plane is then propagated via ¥~! to
the SLM plane (Espm(x',y')), where the final SLM phase profile is estimated
(¢sLm(x',y)):

vt (B (x,y)] = EsLu (X/7 y/)7

LEsm(x,y') = ¢sm (%, y').

The constrained SLM wavefront (Agpm(x’,y’) exp (igsLm(x’,y’))), which incor-

porates laser amplitude constraints (Aspm(x’,y’)) is then forward propagated
back to the target plane:

(2b)

v [ASLM(X', y')e<i¢SLM<X’vY’))} —E(x,). (2¢)

Inter-plane propagation (z) at the target plane is also calculated via ¥. A
loss function £ then evaluates the difference between the rendered point cloud
(2(P)) and the reconstructed (r) amplitude (|E,(x,y)|*) at the target plane:

T

£(2P), (B (xy)). (2d)

Thus, this architecture performs implicit phase retrieval using a wavefront ad-
justment network as defined in [I]: first at the target plane via W(-) (Eq. 24)),
then at the SLM plane through ¥—! (Eq. 2b)), all in an unsupervised fashion

(Eq- 24, [Eq. 2d).

2.3 Experiments

Model: We generate a custom dataset of 60,000 images, each containing 36
points distributed across three planes. The dataset is split into training (90%)
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and validation (10%) sets, with an additional independent test set of 1,000 images
for evaluation. Our loss function is a weighted combination of accuracy (weight:
1) and mean squared error (weight: 0.25). Images are standardized to a
resolution of 256x256, with three planes each containing 12 simulated points.
For forward and backward propagation, we employ free-space propagation with
a wavelength of 1035 nm, a propagation distance of 0.4 m, and an inter-plane
spacing of 0.05 m. The SLM parameters include a pixel pitch of 9.2 ym and a
resolution of 256x256. The FMH used in this study were selected for proof-of-
concept evaluation; for real-world optical CGH experiments, the model must be
retrained using application-specific FMH. We employ a multistep learning rate
scheduler with milestones at epochs 17, 18, and 19, and a decay factor of 0.1.

HoloPointNet Architecture
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Fig. 1. HoloPointNet Framework: (H¥p(P) = W o Ao O(P)). Here, Baseline and Ab-
lation 4 are both variants of the proposed HoloPointNet. The Wavefront Reconstruction
module (WW(-)) (light red) has a hierarchical channel reduction for the Baseline model
and abrupt channel reduction for the Ablation 4 model.

Comparison and Ablation Studies: We compare our model to an adapted
3D Gerchberg—Saxton (GS3D) [I4I11] with free-space propagation, as existing
methods (e.g., DeepCGH[II]/2.0 [10], etc.) differ in forward models or input
representations, precluding direct comparison. Additionally, we conduct abla-
tion studies to analyze the impact of different architectural components: (1)
Ablation 1: Removal of hierarchical shared MLPs in the ©(:), replaced with a
single shared MLP, to assess the significance of multiple shared MLPs. (2) Ab-
lation 2: Substitution of the fully connected layer with a transpose convolution
for feature extraction and image formation. (3) Ablation 3: Elimination of the
residual block from the A(-) module to isolate the importance of residual con-
nections. (4) Ablation 4: Modification of the W(-) by replacing the hierarchical
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channel reduction layer with abrupt convolutional layers (128 — 1), to evaluate
the effect of this change on performance.

Evaluation Metrics: We evaluate our models presented in using four
key metrics, where I and I represent the 3D target and predicted intensity
distributions, respectively. Contrast (C') quantifies the power density difference
between target and non-target regions. Accuracy (A) measures the cosine similar-
ity between the target and predicted images, providing an assessment of overall
alignment. The efficiency metric (F) indicates the proportion of predicted inten-
sity that overlaps with the target intensity, normalized by the total predicted
intensity. Lastly, speckle contrast (Cspeckle) characterizes noise or intensity vari-
ability in non-target regions by comparing the mean intensity (u) to its standard
deviation (o).
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3 Results and Discussion

We evaluated all models on a fixed test dataset consisting of 1,000
simulated images. Both qualitative and quantitative analyses indicate that the
Baseline model and Ablation 4 outperform the iterative GS3D algorithm
Fig3).

Ablation 1 performed poorly in both qualitative and quantitative evalua-
tions, highlighting the importance of multi-layered shared MLPs in the feature
extractor. Ablation 2 exhibited reduced contrast due to its high power density
in non-target regions. Similarly, Ablation 3, which involved modifications to the
hierarchical upsampling module, displayed significant non-target intensities, as
reflected in qualitative assessments . Interestingly, Ablation 4 out-
performed the Baseline model across most evaluation metrics . While the
validation loss for the Baseline model was lower than that of Ablation 4 during
training, Ablation 4 ultimately achieved superior performance on this specific
test dataset. We observed that the Baseline model tends to get trapped in local
minima for certain test images, as indicated by the long-tailed distributions in
the violin plots . Initially, all models were evaluated with a batch size
of 1, where the Baseline model, trained with a larger batch size (25), showed a
performance drop.

To examine the impact of batch size, we re-evaluated both the Baseline and
Ablation 4 models with larger batch sizes in This reduced the long-tailed
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Original Baseline GS3D Ablation 1 Ablation 2 Ablation 3 Ablation 4

Fig. 2. Qualitative Analysis of Simulated Holographic Reconstruction: The rows repre-
sent the first, second, and third target intensity planes from top to bottom (inter-plane
spacing of 0.05 m, first plane propagated at the distance of 0.4 m). The first three
columns show comparative studies, while the last four columns present the results of
the ablation studies.

distribution for the Baseline model and slightly improved its performance. How-
ever, Ablation 4 also benefited from the increased batch size and continued to
outperform the Baseline model, demonstrating greater robustness across differ-
ent batch size settings. Ablation 4 also outperformed Baseline model on a larger
dataset with 2,000 images Our results suggest that abrupt channel re-
duction introduces an information bottleneck, forcing the network to focus on
the most critical features, particularly in sparse data scenarios. The qualitative
analysis of Ablation 4 showed improved identification of high-amplitude
regions, albeit with a trade-off of increased speckle contrast , indicating
greater intensity variation in non-target areas. We demonstrated the enhanced
speed and performance of our network compared to the iterative GS3D algorithm

(T 7).

Metric D:2000,BS:25 D:2000,BS:1 D:1000,BS:25 D:1000,BS:1 GS3D
Accuracy T (0.565,0.583) (0.565,0.583) (0.559,0.583) (0.56,0.583) 0.480
Contrast 1 (6.743,7.116) (6.576,6.968) (6.636,7.192) (6.526,6.97) 5.469
Efficiency 1 (0.117,0.124) (0.114,0.120) (0.115,0.124) (0.113,0.120) 0.1
Speckle Contrast | (0.694,0.777) (0.750,0.762) (0.613,0.774) (0.743,0.758) 0.739
Time (sec) | (0.508,0.425) (0.0321,0.0324) (0.509,0.439) (0.0332,0.0322) 0.533

Table 1. Average evaluation metrics across different datasets and batch sizes (D:
dataset size, BS: batch size). For each value (-,-), the first represents the Baseline
model, and the second represents Ablation 4. Metrics in the final column represent
averages over 1,000 images (D:1000) at iteration 30 of GS3D. Average iteration time
in the final column is calculated cumulatively from iterations 1 through 30.
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Fig. 3. Quantitative Analysis of Simulated Holographic Reconstruction: The four pan-
els display evaluation metrics on 1,000 test images. The first violin plot shows the
ideal scenario with similar images. The subsequent plots represent the Ablation 1-4
models, Baseline model and the GS3D algorithm at the 4,000th iteration. Mean and
median (dotted line) values are indicated below each plot. A Wilcoxon signed-rank
test (one-sided, alternative: “greater”) confirmed that the Ablation 4 model signifi-
cantly outperforms the others in accuracy, efficiency, and contrast (p < 0.025, marked
*). However, the Ablation 4 model’s speckle contrast is significantly higher than all
other models, indicating poorer performance in this aspect.
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4 Conclusion

In this paper, we present HoloPointNet, a novel deep learning framework that
efficiently processes point cloud data for multi-plane holography. HoloPointNet
significantly reduces computational overhead compared to traditional grid-based
methods for holographic optogenetics and similar applications by leveraging a
concatenation-based feature extractor, hierarchical upsampling, and a wavefront
reconstruction module. Our results demonstrate that HoloPointNet outperforms
the adapted iterative GS3D algorithm, in both speed and performance. Addition-
ally, the model maintains high accuracy and contrast while improving efficiency.
Notably, our analysis suggests that the HoloPointNet variant (Ablation 4) with
abrupt channel reduction provides a more robust and effective solution, fur-
ther enhancing performance in holographic reconstruction. Overall, HoloPoint-
Net offers a computationally efficient and scalable approach, advancing the field
of computer-generated holography. Additionally, a lighter version of the model
has been successfully applied to 2D holography for free-space propagation and
Fourier holography, further demonstrating its versatility.
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