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Abstract. Accurate probability estimates are critical for clinical decision-
making, yet many Multiple Instance Learning (MIL) methods prioritize
classification performance alone. We investigate the calibration qual-
ity of various MIL aggregation strategies, comparing them against sim-
pler instance-based probability pooling in both in-distribution and out-
of-distribution ultrasound imaging scenarios. Our findings reveal that
attention-based aggregators yield stronger discrimination but frequently
produce overconfident predictions, leading to higher calibration errors.
In contrast, simpler instance-level methods offer more reliable risk es-
timates, albeit with a modest reduction in classification metrics. These
results underscore a trade-off between predictive strength and calibra-
tion in MIL, emphasizing the importance of evaluating both aspects for
clinically robust applications.
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1 Introduction

Multiple Instance Learning (MIL) is especially well-suited to medical imaging
scenarios in which each patient (bag) is represented by multiple images (in-
stances) yet only receives a single, high-level label (e.g., benign vs. malignant)
[15]. This setup naturally arises in clinical contexts such as histopathology, mam-
mography, and ultrasound, where per-image annotations are costly and time-
consuming, or simply infeasible [6,2]. MIL frameworks address this challenge
by aggregating instance-level features into a single bag-level prediction and can
additionally highlight the most influential images—an important property for
interpretability and clinical decision-making.

Despite extensive research on improving the discriminative performance of
MIL systems, relatively little attention has been paid to the calibration of their
predicted probabilities. Calibration refers to how well a model’s predicted risks
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align with true event frequencies—a critical aspect of reliability in medical set-
tings. For instance, overconfident estimates can lead to unnecessary interven-
tions, whereas underestimation may delay essential care [13]. Ensuring properly
calibrated predictions is thus paramount, yet the calibration characteristics of
different MIL aggregation methods remain largely unexplored.

In this work, we investigate the calibration of several MIL aggregation strate-
gies—ranging from simple mean pooling to more sophisticated attention-based
mechanisms, and we benchmark them against instance-level baselines in both
in-distribution and out-of-distribution ultrasound imaging scenarios.

2 Methodology

2.1 Multiple Instance Learning (MIL) Setup

We consider a multiple instance learning (MIL) framework where each patient
(bag) b has a collection of 2D transvaginal ultrasound (TVUS) images (in-
stances):

Xb:{xl{,xg,...7x§’\,b}7 (1)

with IV, the number of images in bag b. We assume the images in each bag are
independent, have no inherent ordering, and that N} can vary per patient. There
are B patients in total, with b € {1,..., B}. A single binary label Y € {0,1}
is assigned to each bag, indicating benign (Y® = 0) or malignant (Y* = 1).
Under the classical MIL assumption, each instance within the bag also has an
(unobserved) binary label y? € {0, 1}. The bag-level label relates to the instance-
level labels by:

Yyt = maX{yg’, ... ,y?\,b}, (2)

hence Y’ = 1 if and only if at least one instance is positive.

2.2 MIL Aggregation

Each image x? € R3#W (with 3 denoting color channels, and H, W the spatial

dimensions) is passed through a backbone to produce a feature vector hé’ € R4
We then pool or aggregate the set of instance embeddings {h’, ..., h}jvb} into a
single bag-level embedding H’. We explore four MIL pooling techniques:

Mean Pooling — We compute the simple average over instance features:
b 1 b
H = — ) hj. (3)

Max Pooling — We take the per-dimension maximum across instances:

by b _
(H)m = 1<JrnkanSbe(hk)m, m=1,...,d. (4)
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Attention-Based Aggregation — Following Ilse et al. [9], we adopt a gated
attention mechanism, where each instance embedding hZ € R? is mapped into
an L-dimensional space:

A} =tanh(Vh}), Al =o(UhY), (5)
where U,V € RE*4, We combine them elementwise:
AP =AY © A, ar=w AP, (6)

followed by a softmax to produce attention weights ay. The final bag-level em-
bedding is the weighted sum of instance embeddings:

Ny
H’ = a,h}.
k=1

Attention- and Uncertainty-Based Aggregation —

We propose an inverse-entropy re-weighting of the gated-attention scores
that softly down-weights high-entropy (i.e. uncertain) instances while retain-
ing the full set of images in the bag. A conceptually related idea—“Certainty
Pooling™—was introduced by Gildenblat et al. [8], performing a hard arg-max
selection that relies on Monte-Carlo dropout, whereas our variant keeps the orig-
inal soft attention and requires only a single deterministic forward pass. After
the standard attention weights «j are computed, the binary-class entropy of
instance k is

Bi = —[pxlogp + (1—pi) log(1 — pi) . (7)

with pj the confidence that instance k belongs to the bag-level label Y. We
define an inverse-uncertainty weight

1
U = ) (8>
1+ B,

multiply each aj by uy, and re-normalize to again ensure the weights sum to 1:

- Q- U
ay = —xv——- (9)
Ej:bl Uy
Finally, the bag embedding becomes
Ny
H® = ) aphj. (10)
k=1

2.3 Calibration of Bag-Level Predictions

Let Y be the model’s predicted label and P the associated confidence, or the
probability of correctness. We aim for calibrated predictions, meaning that when
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the model outputs a confidence p, the true frequency of positives should be p.
Formally, calibration requires:

PY=Y | P=p) =p, Vpel01]. (11)

While perfect calibration is seldom attained in practice, it is commonly assessed
via calibration plots (also known as reliability diagrams and the expected cali-
bration error (ECE). The Brier score is also frequently reported; influenced by
calibration, it is fundamentally an overall performance metric because it also
depends on discrimination [1].

Calibration Plots — A common way to visualize calibration is to group pre-
dictions into M bins (e.g. deciles) and plot the average confidence (predicted
probability) against the observed accuracy (event rate) in each bin [4,12]. Let
B,, be the set of indices of patients whose prediction confidence falls into the

interval I, = (qu’ %) The observed accuracy within B,, is then:
1
acc(Bp,) = 1B Z 1@ =", (12)
! beB,,

where 3” and y® are the predicted and true class labels for patient (bag) b. The
average confidence for bin B,, is:

conf(B,,) = 1 Z @), (13)

| B bEBm

where p? is the confidence of patient b. This bin-based approach helps reveal
whether predicted risks align with actual frequencies.

An alternative is to fit a logistic calibration model, as often proposed in clinical
risk prediction modeling [14, 3]:

logit(]P’(f/b =1|P= ")) = a + (logit(p®). (14)

Perfect calibration requires « = 0 and ¢ = 1. A slope ¢ < 1 means predicted
probabilities are too extreme, whereas ( > 1 suggests they are too moderate.
When focusing solely on the intercept, we fix ( = 1 so that the resulting cali-
bration intercept o’ reveals whether the predicted risks are overestimated (o <
0) or underestimated (o’ > 0) on average.

Expected Calibration Error (ECE) — Calibration Plots are primarily vi-
sual, whereas Expected Calibration Error (ECE) [11] offers a scalar metric of
miscalibration, more precisely it is defined as the difference in expectation be-
tween confidence and accuracy, given by:

M
ECE = Z |B§1| ’acc(Bm) — conf(B,)|, (15)
m=1

where {B,,}M_, are bins of predictions, B is the total number of patients,
acc(Byy,) is the observed proportion of positives, and conf(B,,) the average pre-
dicted probability in bin m. Lower ECE values indicate better calibration.
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Brier Score — Finally, the Brier Score (BS) [7] measures the mean squared
difference between predicted probabilities and true class labels:

B
_ 1 b b\2
BS = & ;(p y’)%, (16)

As a proper scoring rule, BS rewards well-calibrated predictions (the lower, the
better).

3 Experiments

Dataset We used an interim Prospective Ultrasound Owarian Tumor dataset
consisting of 8,824 images from 1,457 patients, collected between 2019 and 2024
across 11 centers in 6 countries. Each patient’s histological diagnosis (benign vs.
malignant) served as the binary label. Overall, 37.2% of bags (patients) were
malignant, whereas 40.2% of instances (images) were malignant. The difference
arises because some malignant patients had more images, thereby increasing the
proportion of malignant images. The number of images per patient ranged from
1 to 30 (Mean = 6.06, SD = 5.26). Figure 1 presents the distribution of patients
per center, bundling centers contributing fewer than 5% of patients.

Implementation Details We employed the ConvNeXt-small architecture [10]
(ImageNet-22k pre-train, ImageNet-1k fine-tune [5]) as the backbone for all mod-
els, followed by a single linear classifier. Images are resized to 224 x 224, z-score
normalized, and augmented with standard affine and elastic transforms. Models
are trained with the stochastic gradient descent (SGD) optimizer with momen-
tum, a learning rate of 5 x 10™%, and a cosine annealing scheduler. For the MIL
variants, we formed mini-batches that pack several complete bags until the total
reaches at most 64 images—well above the maximum of 30 images per patient.
Cross-entropy is computed per bag, then averaged across the mini-batch, yield-
ing a single scalar for back-propagation while ensuring efficient GPU utilization.
For the instance baselines, the backbone produces a probability for each image
individually; patient-level scores are then obtained by mean or max pooling over
that set of image-level probabilities.

Evaluation We evaluated performance using two strategies: an in-distribution
(ID) approach with 5-fold cross-validation at the patient level, and an out-
of-distribution (OOD) approach based on leave-one-center-out cross-validation
following the center scheme in Figure 1. For each fold or held-out center, we
measured validation set performance, after which we pooled the validation set
predictions across folds (or centers) into a single set, to compute the overall
performance metrics with 95% confidence intervals derived via bootstrapping.
Classification metrics included accuracy, Fl-score (both thresholded at 0.5), and
the area under the ROC curve (AUC). Calibration was examined with the ex-
pected calibration error (ECE) and logistic calibration plots. Additionally, we
report the Brier score, providing an indicator of overall model performance.
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Fig. 1. Distribution of images per patient at each center, stratified by histology. Centers
contributing fewer than 5% of all patients are grouped under Other Centers.

4 Results and Discussion

Table 1 summarizes classification and calibration metrics for two validation pro-
tocols: in-distribution (ID), using 5-fold cross-validation at the patient level, and
out-of-distribution (OOD), via leave-one-center-out cross-validation. All metrics
use the raw output probabilities—no post-hoc calibration method was used—such
that any differences arise solely from the aggregation strategy itself. Under ID
conditions, MIL+GA+Uncertainty shows a modest improvement in AUC and
F1l-score compared to Instance+Mean; however, Instance+Mean offers the best
calibration (lowest ECE and Brier). Notably, MIL+Max also achieves relatively
low ECE. In the OOD scenario, MIL+GA obtains the highest accuracy and
F1l-score, while MIL+GA-Uncertainty yields the highest AUC. Even so, In-
stance+Mean again demonstrates superior calibration.

Figure 2 provides the logistic calibration plots (both per fold/center and ag-
gregated) alongside prediction histograms. These highlight that all MIL-based
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Fig. 2. Logistic calibration plots (both per fold/center and aggregated) and correspond-
ing prediction histograms for different MIL aggregation strategies, evaluated under

in-distribution (ID) and out-of-distribution (OOD) validation protocols.
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Table 1. Performance metrics (with 95% confidence intervals) aggregated for both the
patient-wise 5-fold (ID) and leave-one-center-out (OOD) validation strategies.

Validation Method ACC F1 AUC ECE Brier
Instance+Mean 0.828 (0.808-0.846) 0.768 (0.741-0.795) 0.905 (0.889-0.920) 0.033 (0.026-0.054) 0.120 (0.110-0.130)
Instance+Max 0.774 (0.753-0.795) 0.753 (0.729-0.779) 0.904 (0.888-0.920) 0.172 (0.155-0.191) 0.164 (0.151-0.177)
5-Fold CV (ID) MIL+Mean 0.823 (0.802-0.842) 0.759 (0.729-0.788) 0.893 (0.877-0.910) 0.069 (0.057-0.091) 0.131 (0.118-0.144)
MIL-+Max 0.830 (0.811-0.849) 0.759 (0.730-0.788) 0.895 (0.877-0.911) 0.036 (0.027-0.058) 0.124 (0.112-0.136)
MIL+GA 0.820 (0.800-0.840) 0.769 (0.740-0.796) 0.906 (0.890-0.921) 0.087 (0.075-0.109) 0.132 (0.119-0.146)
MIL+GA -+ Uncertainty 0.826 (0.805-0.846) 0.773 (0.745-0.799) 0.908 (0.892-0.922) 0.093 (0.077-0.112) 0.131 (0.118-0.145)
Tnstance + Mean 0.800 (0.778-0.820) 0.717 (0.684-0.743) 0.863 (0.844-0.883) 0.020 (0.018-0.045) 0.142 (0.131-0.153)
Instance+ Max 0.747 (0725-0.770) 0.714 (0.685-0.742) 0861 (0.8420.882) 0144 (0.127-0.166) 0175 (0.162:0.188)
LOCO (OOD) MIL+Mean 0.797 (0.777-0.818) 0.719 (0.688-0.750) 0.867 (0.849-0.888) 0.100 (0.082-0.119) 0.151 (0.136-0.166)
MIL+Max 0.802 (0.781-0.822) 0.603 (0.658-0.726) 0.871 (0.853-0.891) 0.086 (0.070-0.106) 0. 146 (0.132-0.159)
MIL+GA 0.806 (0.786-0.828) 0.724 (0.691-0.756) 0.871 (0.852-0.890) 0.106 (0.091-0.128) 0.153 (0.137-0.168)
( ) 0 )

MIL+GA+Uncertainty 0.799 (0.778-0.821) 0.718 (0.685-0.749) 0.872 (0.854-0.892) 0.103 (0.087-0.125 0.134-0.165

strategies tend to push bag-level probabilities closer to 0 or 1, thus producing
overconfident predictions—albeit less so for MIL+Max. Overall, while attention-
based approaches can offer modest gains in classification performance, they typ-
ically come at the cost of poorer calibration. Meanwhile, simpler instance-level
methods (e.g., Instance-+Mean) maintain more reliable probability estimates but
yield slightly lower discrimination.

Because each patient has only a single histology label, we lack image-level
ground truth and cannot compute quantitative instance-level metrics (e.g., an
instance-level AUC). We therefore examine attention patterns qualitatively. Fig-
ure 3 presents a malignant case with five images: the instance baseline outputs a
separate probability for every image, whereas MIL+GA+Uncertainty yields one
bag-level probability plus attention weights. The first, fourth, and fifth images
receive the highest weights—aligning with visible solid tissue suspicious for ma-
lignancy—demonstrating how attention can surface clinically meaningful cues
and offer an interpretable rationale behind model predictions.

p=0.8846 p=0.4313 p=0.9473 p=0.9433

Instance

p=0.9605 p=0.9605 p=0.9605 p=0.9605 p=0.9605
y=1 y=1 y=1 y=1 y=1
a;=0.2112 1323 a;=0.1433 a,=0.2928 as = 0.2204

MIL+GA+Uncertainty

Fig. 3. Comparison of instance-level (per-image) predictions versus a gated attention-
based MIL approach that outputs a single bag-level probability along with per-image
attention weights. Shown here is a malignant bag, where the first, fourth, and fifth
images receive higher attention weights, corresponding to visibly solid tissue regions,
indicative of malignancy.
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Future Steps and Key Takeaways. Our results reveal a trade-off between
discrimination and calibration in MIL. While attention-based approaches may
boost classification performance, they often produce overconfident predictions.
Moving forward, calibration metrics should be a central consideration in develop-
ing new MIL frameworks, particularly in medical imaging domains where poorly
calibrated risk estimates may have serious clinical consequences.
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