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Abstract. Cone-beam computed tomography (CBCT) is gaining promi-
nence in clinical radiology, particularly for intraoperative guidance, ow-
ing to its lower radiation dose and faster acquisition speed compared
to computed tomography (CT). However, CBCT images often exhibit
compromised quality, characterized by increased noise, artifacts, and di-
minished soft-tissue contrast, which can hinder their direct clinical ap-
plication. While CBCT-to-CT translation presents a promising solution,
this task faces significant challenges in multi-institutional settings where
diverse imaging protocols introduce substantial domain shifts, especially
when paired CBCT-CT data is scarce. Current unsupervised domain
generalization (UDG) techniques often struggle to simultaneously main-
tain robust anatomical accuracy and preserve domain-specific character-
istics—both crucial for clinical reliability. To address these limitations,
we propose a novel disentangled representation learning framework for
UDG-based CBCT-to-CT translation. Our method uniquely separates
domain-invariant anatomical content from domain-specific styles, while
leveraging learnable domain-style prototypes to dynamically capture key
stylistic characteristics. To ensure high-quality translation, we implement
a dual-level consistency mechanism that guarantees both anatomical fi-
delity and style alignment. By utilizing unpaired data for training and en-
abling flexible content-prototype combinations, our framework effectively
generalizes to new institutions without requiring paired data. Extensive
validation across three distinct institutional domains demonstrates that
our method achieves superior anatomical accuracy and style fidelity com-
pared to state-of-the-art approaches, establishing a clinically practical
UDG paradigm with inherent cross-institutional interoperability.

Keywords: CBCT-to-CT Translation - Unsupervised Domain General-
ization - Decoupled Representation Learning - Style Consistency.
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1 Introduction

Cone-beam Computed Tomography (CBCT) has gained widespread adoption
in clinical practice due to its lower radiation dose, reduced cost, and real-time
imaging capabilities compared to conventional CT [1, 2]. However, CBCT images
often suffer from artifacts, noise, and intensity inconsistencies across different
scanning protocols and institutions, limiting their direct use in diagnosis and
treatment planning [3, 4]. Converting CBCT to CT-like images while maintaining
anatomical accuracy and achieving consistent quality across different centers
remains a significant challenge in medical imaging.

Recent advances in image-to-image translation [5, 6, 7|, particularly with
deep learning approaches such as U-Net architectures [8] and Generative Ad-
versarial Networks (GANs) [9], while providing baseline solutions [10], [11], lack
the flexibility and generalization capabilities required for robust multi-center
applications [12].
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Fig. 1. Diagram of different approaches to CBCT-to-CT translation. (a) Single-source
translation involves training and testing on data from the same institution. (b) Single-
source domain generalization allows for training on one domain while testing on the
same domain. (c) Multi-source domain generalization incorporates data from multiple
centers, enhancing model robustness across diverse imaging conditions. Blue and purple
colors represent CBCT and CT images, respectively.

To address domain shifts caused by protocol and scanner variations, unsuper-
vised domain generalization (UDG) techniques have emerged [13, 14|, employing
strategies such as data augmentation [15, 16], domain-invariant feature learning
[17] and meta-learning [18]. While these approaches enhance model robustness to
domain variations [19], they often compromise on the precise anatomical detail
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preservation and high-fidelity reconstruction necessary for clinical CBCT-to-CT
translation tasks.

Style transfer and disentangled representation learning [20] have been ex-
plored for medical image harmonization and modality synthesis [21]. However,
existing methods typically employ simplified style guidance mechanisms and lack
explicit domain generalization components, resulting in suboptimal performance
when handling institution-specific imaging characteristics and cross-center vari-
ations in CBCT-to-CT translation.

To address these limitations, we propose MSDG-StyleNet, a novel framework
that combines domain-style prototypes with disentangled representation learning
for robust cross-institutional CBCT-to-CT translation. Our main contributions
include:

1. We develop a novel framework enabling unpaired, unsupervised CBCT-to-
CT translation with cross-institutional generalization capability.

2. We introduce a domain-style prototype learning mechanism that facilitates
targeted style transfer to specific institutional domains during inference.

3. We establish a dual-level consistency mechanism by integrating disentangled
representation learning with cycle consistency, ensuring robust content-style

alignment.
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Fig. 2. Overview of the proposed MSDG-StyleNet architecture for unpaired CBCT-
to-CT image translation. The network employs modality-specific content and style
encoders to disentangle anatomical features and domain characteristics, respectively.
Learnable domain-style prototypes capture domain-specific style information across
different medical centers, while the shared decoder with AdaIN modules enables both
self-reconstruction and cross-domain translation. Red arrows in the figure indicate the
flow of parameter gradient updates during network optimization.
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2 Method

2.1 Overview of the Architecture

We introduce the Multi-Source Domain Generalization with Style-Consistent
Disentangled Network (MSDG-StyleNet) to address unpaired CBCT-to-CT im-
age translation, specifically tackling domain shift between modalities X, and
X, from different medical centers. Given X, = {X,,, Xoy,...,Xq, } and X =
{Xp,, X, -y Xp,, }, MSDG-StyleNet learns a mapping f : X, — X, without
paired data.

As illustrated in Fig. 2, MSDG-StyleNet’s architecture is composed of key
components for disentangling content and style. Specifically, modality-specific
content encoders, E&pop @ Xq — C and E&p : X, — C, map CBCT (X,) and
CT (X,) images to a shared latent content space C, capturing modality-invariant
semantic information. Similarly, modality-specific style encoders, E&pop @ Xo —
S and Edp @ Xp = 5, extract modality-specific style features by mapping im-
ages to a shared latent style space S, representing modality-specific textures and
appearances. A shared decoder network G : (C,S) — X reconstructs images by
integrating content codes from C and style codes from S, utilizing Adaptive In-
stance Normalization (AdaIN) modules for effective fusion, as detailed in Fig.
3(b). Furthermore, MSDG-StyleNet incorporates learnable domain-style proto-
types, S¢ € S and Sl‘f € S for CBCT and CT respectively, serving as reference

style prototypes for each modality.
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Fig. 3. (a) Illustration of our learnable style prototypes in the shared latent style space,
where the red point (S?) denotes the domain-style vector representing the overall stylis-
tic essence of a domain, and green points (Sz1, Sz2, Sz3) depict sample-specific style
vectors. These vectors are learned to effectively capture both global domain character-
istics and individual variations. (b) The extracted style vector feeds into an MLP to
generate AdaIN parameters, which are then used by the decoder to fuse content and
style for image reconstruction or cross-domain translation.
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2.2 Learnable Domain-Style Prototypes

For robust and generalized style transfer, domain-style prototypes are optimized
through a carefully designed process. Initialized randomly in the shared latent
style space S, as visualized in Fig. 3(a), these prototypes are iteratively refined
using a domain loss function. While image-specific style codes (S,, Sy) capture
individual image characteristics, the prototypes S¢ and S,‘,i learn to represent
fundamental stylistic patterns inherent to each modality. This optimization en-
ables the prototypes to generalize style representation across varying scanning
conditions and parameters within each domain.

The effectiveness of these prototypes is maintained through a dual mecha-
nism that facilitates cross-domain translation and enables secondary reconstruc-
tion for accurate domain style representation. The validity of the prototypes is
further reinforced through a dual-consistency constraint system. Cycle consis-
tency loss preserves content integrity, while domain loss ensures style alignment.
Additionally, adversarial learning guides prototype updates by supervising the
domain adherence of the generated images.

2.3 Optimization Objective

We train MSDG-StyleNet using a composite loss function consisting of four com-
ponents to ensure realistic image generation, content preservation, and effective
style transfer between domains.

To make the generated cross-stylized images perceptually indistinguishable
from real images, we employ an adversarial loss with two discriminators, D, for
CBCT and D, for CT:

&40 = Eaex, [log Da(2)] + Eyex, [log(1 — Da(G(Ch, Si)))]
L4, = Eyex,[log Dy(y)] + Ezex, [log(1 — Dy(G(Ca, Si)))]
Lad’u = Lgdv + Lgdv’ (3>

b
)

where G(-,-) generates cross-stylized images and D,, D, measure real-image
classification probabilities.

For content preservation, we incorporate a reconstruction loss using L.1 norm
to ensure reconstructed images maintain their original features:

Lrec = Boy |2 — G(EGpor(®), E&por(®))lh
+ly = G(EGr(y), Eer )] (4)

To maintain content integrity across style transfer cycles, we implement a
cycle consistency loss that compares original and re-encoded content codes:

Leye = Eaylllz — G(EEpor(2), S))llu
+ly = G(EE(y), S (5)
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Finally, we ensure style consistency between image-specific codes and domain
prototypes through a domain loss combining MSE and cosine similarity:
Laom = MSE(S,,S%) + MSE(Sy, S¢)
+ Aeos (2 — c0s(S,, 89) — cos(Sy, SE)). (6)
These components are combined into a total loss function with balanced

weights:
Ltotal = )\adeadv + )\rechec + )\cychyc + )\dodeom; (7)

where Agav, Arec, Acye, and Agom are hyperparameters that control the influence
of each term.
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Fig. 4. Visual comparison of CBCT-to-CT translation results using different methods.
The top and bottom rows show translations from center B to centers A and C styles
respectively, with reference CT images providing style guidance. Zoomed regions high-
light local details.

3 Experiments

We utilized a multi-center dataset from the SynthRAD2023 Grand Challenge
[22], comprising 180 CBCT-CT sets across three institutions: UMC Utrecht,
UMC Groningen, and Radboud Nijmegen. Each institution contributed 60 CT
and 60 CBCT volumes, with each 3D volume containing approximately 180-
240 slices at resolutions ranging from 224 x224 to 256 x256 pixels. The original
dataset encompassed roughly 66,072 axial slices.

The data preprocessing pipeline involved several steps. Initially, we sliced
each volume along the axial (z) dimension to extract 2D images. Subsequently,
a mask matching procedure was implemented to ensure anatomical alignment
between modalities. Slices with an effective tissue area less than 15% of the
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total image area were excluded due to their limited diagnostic relevance. The
resulting dataset consisted of 64,462 valid slices, which were resized to 256 x256
pixels. To create an unpaired training scenario, we performed a global slice-level
shuffling across all processed images, deliberately breaking any inherent slice-
wise correspondences between modalities. Voxel intensities were then normalized
to the range [—1, 1], adhering to standard practice.

3.1 Hyperparameter Settings

We trained the MSDG-StyleNet model using the Adam optimizer with a learning
rate of 1 x 107°. The batch size was set to 2. The loss function weights were
configured as follows: Aggy = 1, Arec = 1, Agye = 10 and Agor, = 1. The model
was trained for 50 epochs. The cycle consistency loss used the L1 loss function,
while the GAN loss employed the Hinge loss function. All experiments were
conducted on a single GPU with 24GB of memory.

Table 1. Comparison of different models and ablation study results on unpaired image
translation metrics.

B—A B—C
Network
FID (4) EMD (}) 1-NN (J) FID (4) EMD (J) 1-NN ({)

CycleGAN [23] 128.49 0.0156 0.9338 130.68 0.0186  0.9308
DCL [24] 125.77 0.0053 0.9706 128.88 0.0123  0.9462
U-GA-TIT [25] 115.32  0.0059  0.9401 110.24 0.0084 0.9325
UNIT [26] 96.49 0.0054 0.7206 90.50 0.0075 0.7771
MUNIT [27] 90.55 0.0113 0.8235 86.61 0.0162 0.7769

w/ Concat (vs. AdaIN) 320.78 0.0191  0.9950 318.42 0.0183  0.9940
w/o Cycle Consistency 88.45 0.0052 0.7306 85.21 0.0073  0.7869
w/o Style Prototypes 92.17  0.0078 0.8088 89.32 0.0089 0.7462
Ours 81.63 0.0042 0.7206 77.76 0.0036 0.6615

3.2 Results and Analysis

We evaluate our method against state-of-the-art unpaired image translation ap-
proaches (Fig. 4) and analyze the contribution of individual components through
ablation studies.

Our method was quantitatively assessed using three metrics: Fréchet Incep-
tion Distance (FID), Earth Mover’s Distance (EMD), and 1-Nearest Neighbor
Accuracy (1-NN Acc). FID quantifies the similarity between generated and real
image distributions, and lower FID scores indicate higher image quality. EMD
measures the minimal cost to transform one distribution into another, with lower
EMD values suggesting superior distribution matching. 1-NN accuracy assesses
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the distinguishability between generated and real images, where lower values im-
ply better generation quality, as the discriminator encounters greater difficulty
in differentiation.

As demonstrated in Table 1, our method consistently surpasses baseline
methods across all metrics in both B—A and B—C translation scenarios. No-
tably, our method achieves the lowest FID scores (81.63 and 77.76), signifying
superior image quality and realism. Traditional methods like CycleGAN [23],
DCL [24] and U-GA-TIT [25] exhibit limitations, presenting higher FID and
EMD values, suggesting less effective domain adaptation. While UNIT [26] and
MUNIT [27] show enhanced performance compared to traditional methods, our
approach still yields superior results, particularly in EMD (0.0042 and 0.0036)
and 1-NN accuracy metrics.

Ablation study results, presented in the lower section of Table 1, corroborate
the effectiveness of key components within our framework. The removal of style
prototypes results in a significant performance decline (FID increase of 10.54 and
11.56 points), highlighting their critical role in capturing domain-specific char-
acteristics. The dual consistency mechanism also proves vital, and its absence
leads to increased FID scores by 6.82 and 7.45 points, respectively. Moreover,
substituting AdaIN with simple feature concatenation degrades performance,
further validating the effectiveness of adaptive style modulation in our architec-
ture. These findings collectively demonstrate that each component significantly
contributes to achieving robust cross-domain translation while preserving both
anatomical consistency and institutional style characteristics.

4 Conclusion

In this study, we present MSDG-StyleNet, a novel framework designed for unsu-
pervised domain-generalized CBCT-to-CT translation, which effectively main-
tains institution-specific style consistency. Our framework incorporates learnable
domain-style prototypes and a dual-level consistency mechanism, enabling ro-
bust domain generalization using only single-source training data. The prototype-
based style encoding offers a scalable solution for managing diverse institutional
styles without escalating model complexity.

Our comprehensive evaluation underscores that MSDG-StyleNet effectively
addresses the inherent challenge of maintaining institutional imaging charac-
teristics during CBCT-to-CT translation, which is pivotal for clinical adoption.
The framework’s success in disentangling content and style, while preserving
institutional characteristics, has broader implications for various medical im-
age processing applications. Future research could focus on developing more
robust protocols for prototype initialization and adaptation across diverse clini-
cal settings, thereby contributing to the advancement of clinically applicable Al
solutions in medical imaging.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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