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Abstract. Red blood cells (RBCs) are fundamental to human health,
and precise morphological analysis is critical for diagnosing hematologi-
cal disorders. Despite the potential of foundation models for medical di-
agnostics, comprehensive AI solutions for RBC analysis remain limited.
We introduce RedDino, a self-supervised foundation model specifically
designed for RBC image analysis. Leveraging a RBC-tailored version of
the DINOv2 self-supervised learning framework, RedDino is trained on
an extensive, meticulously curated dataset comprising over 1.25 million
RBC images from diverse acquisition modalities and sources. Compre-
hensive evaluations demonstrate that RedDino significantly outperforms
existing state-of-the-art models in the RBC shape classification. Through
systematic assessments, including linear probing and nearest neighbor
classification, we validate the model’s robust feature representation and
strong generalization capabilities. Our key contributions are (1) a ded-
icated foundation model tailored for RBC analysis, (2) detailed abla-
tion studies exploring DINOv2 configurations for RBC modeling, and
(3) comprehensive generalization performance evaluation. RedDino cap-
tures nuanced morphological characteristics and represents a substantial
advancement in developing reliable diagnostic tools. Source code and pre-
trained models for RedDino are available at https://github.com/Snarci/RedDino.
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1 Introduction

Hematopoiesis process is the foundation of blood, where stem cells differentiate
into various blood subtypes essential for sustaining bodily functions. Under-
standing this intricate process is key to unraveling hematological phenomena
and diseases [12]. In hematology, computer-aided diagnosis has emerged as a
tool to tackle critical diagnostic challenges [25]. Two prominent areas of focus
are RBC and white blood cell analysis [8, 9, 11], both of which rely extensively on
imaging-based assessments to derive meaningful insights into a patient’s health.
Blood smear analysis serves as the cornerstone of these investigations, involv-
ing the microscopic examination of blood smeared on glass slides. These slides
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are stained to enhance cellular structures, with staining techniques tailored to
specific diagnostic objectives. Variability in staining protocols and imaging ac-
quisition introduces batch effects [32], complicating the analysis process. Beyond
staining, the physical preparation of smears can also slightly alter cell morphol-
ogy due to the pressure applied during the process. For efficient and robust
analysis of white blood cells, the emergence of foundation models has signifi-
cantly advanced the prediction of clinical outcomes [15]. These models demon-
strate impressive capabilities while addressing critical challenges, such as the
batch effect, a common issue in multi-source or multi-patient scenarios. In con-
trast, RBC analysis has yet to fully explore the potential of such technologies.
This work seeks to pioneer the development of foundation models tailored for
RBC analysis, addressing the nuances and requirements necessary for achiev-
ing highly representative and expressive models in this domain. Since training
foundation models typically requires massive amounts of data [22], we also con-
tributed to extracting the most complete and representative collection of RBC
images in different acquisition scenarios. We demonstrate that, with carefully
guided tailoring to state-of-the-art self-supervised learning methods, our family
of foundation models achieves state-of-the-art performance across several RBC
datasets. These models exhibit remarkable generalization capabilities, effectively
mitigating the challenges posed by the batch effect. Our contributions include:

1. A dedicated family of foundation models optimized for RBC analysis, named
RedDino, trained using self-supervised learning.

2. Rigorous comparative investigation studies to evaluate the effectiveness of
DINOv2 [22] configurations in capturing RBC morphology.

3. Extensive benchmarking against existing state-of-the-art models, demon-
strating superior performance on RBC classification and shape analysis tasks.

2 Methodology

2.1 Training Data

RedDino is trained on the largest collection of publicly available RBC image
datasets to date, spanning various imaging modalities, resolutions, and staining
techniques. Leveraging the DINOv2 self-supervised framework, our dataset se-
lection was unconstrained by label availability, a significant advantage given the
scarcity of annotated RBC data.

We selected 18 datasets [1–4, 6, 10, 16–20, 23, 26, 27, 29–31], comprising over
50,000 images from more than 420 individuals (Fig: 1). To mitigate the natural
imbalance between red and white blood cells, we also incorporated datasets
containing white blood cell images [2, 19, 26].

To extract training samples, we applied two approaches. The first involved
segmentation with a fine-tuned version of CellPose [28], iteratively improved
through manual corrections, producing 3,076,269 segmented cells. The second
approach involved extracting non-overlapping patches of smear images with a
size of 224 by 224 pixels, ensuring aspect ratio preservation and dataset diversity,
generating 1,250,781 patches (Fig: 1).
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Fig. 1. The RedDino training set comprises 56,712 original images. We extracted over
3 million single RBC images and more than 1.25 million patches.

2.2 Testing Data

To rigorously evaluate model embeddings, we used datasets with diagnostic or
morphological labels as out-of-distribution test sets. Specifically, we employed
the Elsafty dataset [13], the most comprehensive resource for RBC classification,
containing 240,000 images across nine classes from four sources, with 72,517,
52,506, 52,103, and 63,381 images, respectively. Additional out-of-distribution
test sets included the Chula dataset [21], comprising 20,875 images across 12
RBC classes, and the DSE dataset [20], which consists of 5,659 images spanning
eight classes.

3 Experiments and Results

3.1 Model development strategies

An extensive comparative investigation was conducted to evaluate and improve
RedDino’s effectiveness. Comparisons were made against baseline models, specif-
ically DINOv2 and DinoBloom [15], the latter being the current state-of-the-art
feature extractor for hematological data. The experiments were divided into two
main approaches: one focusing on training with individual cells and the other on
patched smear images. The optimal configuration, which guided the development
of all subsequent models, was selected from the best-performing setup.

Since RedDino is designed to serve as a state-of-the-art backbone for various
tasks in RBC analysis, its development was guided by evaluating feature quality
in RBC shape classification, using the Etsalfy dataset as the primary bench-
mark. Among the various training strategies explored, the DINOv2 framework
was selected due to its strong performance on natural images and robust gener-
alization across downstream tasks. The evaluation approach involved extracting
features and training a linear probing to assess feature quality. Specifically, a
logistic regression classifier from the sklearn library was trained on data from
source 1 of the Etsalfy dataset and tested on source 2. The results revealed
several key findings (see Fig: 2). First, training RedDino resulted in a perfor-
mance decline, similar to DinoBloom, when local crops were used in the training
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Fig. 2. RedDino outperforms baseline models in linear probing evaluation by removing
the Koleo regularizer and applying the Sinkhorn Knopp algorithm. The evaluation uses
source 1 of the Elsafty dataset as the training set and source 2 as the test set.

process. Second, training on patched smear images instead of individual cells
led to significant improvements in model performance. Third, integrating a cus-
tom augmentation pipeline, which replaced DINOv2’s pixel-level augmentations
with 32-pixel-level augmentations from the Albumentations library [5], further
enhanced feature quality.

Two key modifications enabled the model to outperform the state-of-the-art.
The first was the removal of the Koleo regularizer, which is critical in natural im-
age scenarios to prevent feature collapse by ensuring uniform feature distribution.
However, the regularizer hindered representation quality for RBC images due to
the natural uniformity of RBCs in shape and color. Pathological and abnormal
RBCs, which should stand out in the feature space, were overly suppressed. The
second modification involved replacing the moving average centering with the
Sinkhorn Knopp centering, which improved representation quality (Figure 2).

The final model configuration, identified as the best-performing approach, is
the foundation for developing the full suite of RedDino models. We proceeded to
train a suite of three models for 2,000 iterations each, after which performance
decreased over time, a pattern not limited to our RedDino models but a well-
known phenomenon in foundation model research [24]. We finally trained our
models using the same hyperparameters as the original DINOv2 while adjusting
the batch size to accommodate training on two NVIDIA A100 80GB GPUs.
In this setup, the RedDino small model employs a feature dimension of 384
with a batch size of 512 and contains 22 million parameters. The RedDino base
model is configured with a feature dimension of 768, a batch size of 384, and 86
million parameters. Lastly, the RedDino large model features a 1,024-dimensional
feature space, a batch size of 256, and comprises 304 million parameters.

3.2 Multiple scenario evaluation

Our downstream tasks aim to evaluate the expressiveness of the features ex-
tracted from the RedDino model family while keeping the evaluation scenario as
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close as possible to the actual use case. We chose to focus on the classification
task either because ViTs have already demonstrated impressive results in natural
image segmentation and detection using adapters [7] or because state-of-the-art
hematology models like CellPose [28] and RedTell [25] have achieved remarkable
success.

On the classification side, the heavily imbalanced nature of the data poses
a critical challenge. As with most medical imaging problems, many classes re-
lated to pathological findings are underrepresented. Therefore, we conduct ex-
periments on the recognition of such critical RBC subtypes by training linear
probing and K-nearest neighbors (K-NN) classifiers on the extracted features.
The linear probing assesses the adaptability of our features to downstream tasks,
while the K-NNs evaluates the effectiveness and robustness of the features under
potential batch effects.

For evaluation, we employ weighted F1 measure (wF1), balanced accuracy
(bAcc), and the accuracy (Acc) as metrics.

Table 1. RedDino models outperform ResNet50, DINOv2, and DinoBloom by over
2.1% in linear probing evaluation, and over 3.0% in 1-NN and 20-NN evaluation on
the Elsafty dataset using a five-fold cross-validation strategy, where one source is fixed
for training and the others are used for testing. "Avg Improvement" shows the average
performance gain over baselines, while "Improvement" represents the performance gain
compared to non-RedDino models.

Model Linear probing 1-NN 20-NN
wF1 bAcc Acc wF1 bAcc Acc wF1 bAcc Acc

ResNet50 [14] 77.6±8.1 80.3±6.0 77.8±8.0 64.3±4.8 65.8±4.7 64.2±4.9 66.2±4.9 66.9±4.9 67.5±4.5
DinoBloom-S 83.2±8.2 85.2±6.7 83.3±8.0 73.1±5.1 76.7±3.9 73.2±5.1 76.5±4.2 79.6±3.6 77.1±4.1
DinoBloom-B 84.6±6.5 85.4±6.3 84.7±6.5 72.4±6.2 75.6±5.4 72.2±6.3 76.1±6.1 78.9±5.6 76.8±5.8
DinoBloom-L 85.4±5.2 87.2±4.0 85.6±5.0 74.1±5.0 76.7±4.0 74.2±4.8 77.0±4.5 79.0±4.4 77.9±4.1
DINOv2 small 82.1±8.2 83.9±6.7 82.2±8.2 73.5±4.8 75.6±4.3 73.5±4.7 77.2±4.6 78.5±4.5 77.9±4.5
DINOv2 base 85.4±5.5 86.8±4.5 85.4±5.6 75.5±4.3 76.2±4.8 75.6±4.2 79.2±4.8 78.6±5.9 79.9±4.3
DINOv2 large 86.0±5.6 87.2±4.6 85.9±5.7 73.7±6.2 73.3±6.5 73.9±6.2 76.4±7.0 74.8±7.3 77.4±6.4

RedDino small 86.0±7.0 87.2±6.1 86.2±6.6 76.8±4.9 79.8±3.4 76.9±4.8 80.0±4.5 82.6±3.4 80.4±4.4
RedDino base 88.1±4.9 89.3±4.7 88.2±4.9 78.8±3.6 81.8±2.7 78.6±3.7 82.6±2.8 84.8±2.5 82.9±2.8
RedDino large 88.5±5.5 89.1±5.2 88.4±5.5 78.5±4.6 79.7±4.5 78.4±4.6 81.6±4.7 81.9±4.9 81.9±4.6

Improvement % 2.5 2.1 2.6 3.2 5.0 3.1 3.4 5.2 3.0
Avg improvement % 4.0 3.4 4.1 5.6 6.1 5.6 5.9 6.5 5.3

Evaluation is designed in a cross-source fashion since the Elasfty dataset
is subdivided into four sources. This cross-source approach is particularly rele-
vant in clinical trials, where significant variability is often observed in day-to-
day analyses due to differences in equipment, protocols, or sample preparation
methods. Our strategy involves training shallow models on the features from a
fixed source and iteratively testing on the remaining three, cycling through all
four possible combinations. This choice ensures a comprehensive evaluation of
the model’s robustness and adaptability to such variations. The results aver-
aged across the experiments are reported in Table 1. Table 1 presents results
and improvements achieved by our RedDino models compared to the selected
baselines. The row Improvement represents the difference between the best r
RedDino model and the best baseline result; the row Avg Improvement captures
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the difference between the average performance of all RedDino models and the
average performance of the baselines. Often, the choice of a model for down-

Table 2. RedDino outperforms baseline models in linear probing evaluations, with
the only exception of the bAcc on the DSE dataset, in a five-fold cross-validation
approach. "Avg Improvement" shows the average performance gain over baselines, while
"Improvement" represents the performance gain compared to non-RedDino models.

Name Linear probing Chula Linear probing DSE
wF1 bAcc Acc wF1 bAcc Acc

ResNet50 [14] 76.9±0.4 70.7±0.6 76.9±0.4 83.2±0.8 51.5±9.0 83.2±0.7
DinoBloom-S 81.4±0.6 76.0±1.0 81.4±0.6 84.4±1.2 57.5±3.7 84.3±1.1
DinoBloom-B 79.0±0.4 74.3±0.5 78.9±0.4 85.3±1.0 59.9±5.4 85.4±1.0
DinoBloom-L 80.0±0.3 75.0±0.7 80.2±0.6 86.2±0.8 60.7±3.6 86.2±0.9
DINOv2 small 81.0±0.4 73.9±0.7 81.1±0.4 83.6±0.9 54.4±3.6 83.6±0.9
DINOv2 base 80.1±0.5 73.6±0.5 80.1±0.6 84.8±0.5 56.2±4.5 84.8±0.5
DINOv2 large 81.5±0.7 74.8±0.8 81.3±0.2 84.7±0.6 54.4±3.9 84.9±0.5

RedDino small 84.3±0.4 78.5±1.1 84.4±0.4 84.9±1.0 56.5±5.1 84.9±0.8
RedDino base 83.8±0.5 78.6±1.0 83.8±0.5 85.9±0.5 57.9±3.0 86.0±0.5
RedDino large 83.9±0.5 79.0±0.8 85.0±0.4 86.6±1.0 60.1±4.8 86.6±1.0
Improvement % 2.9 3.0 3.6 0.4 -0.6 0.4
Avg improvement % 4.0 3.0 4.4 1.2 1.8 1.2

stream tasks is guided by extensive and computationally expensive benchmarks
designed to identify the optimal model through a brute-force search approach. In
contrast, the proposed indicator offers a more realistic reflection of performance
improvement. Our models demonstrated an improvement of over 2% in reference
metrics for the linear probing and over 3% for the 1-NN and 20-NN, surpassing
the current state-of-the-art methods.

Chula and DSE evaluation is designed to represent heavily unbalanced
scenarios. We employ a 5-fold cross-validation for both datasets. For the sake of
this evaluation, it is worth noting that the Chula dataset was part of the training
data for the DinoBloom methods. Despite this, RedDino proves its generaliza-
tion capabilities, surpassing all other models in linear probing. We do not report
results for NN classification due to insufficient samples of rare classes to per-
form significant analysis. These strong capabilities are also evident in the DSE
dataset, where RedDino outperforms all other models in almost all the selected
metrics and evaluation algorithms.

It is important to note that for all analyzed datasets, the Avg Improvement
was always positive, showcasing the importance and relevance of our models,
as they consistently outperformed other representations for RBC analysis tasks
across different microscopes and sources. Additionally, the evaluations yielded
key insights: training RedDino on patched smear images rather than individual
cells significantly enhanced model performance. RedDino base model proved to
be a strong general solution, balancing performance with efficiency by utilizing
fewer parameters (86 million vs. 304 million).
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Fig. 3. Abnormal RBC distinguished by RedDino: the highlighted regions in (a) and
(c) correlate with distinct colors in the PCA visualization (b) and (d), showcasing
their differentiation provided in the embedding space. Specifically, (a) contains malaria-
infected RBCs, while (c) includes echinocytes.

3.3 Visualization of the RedDino Features

PCA Visualization demonstrates feature relevance (Fig: 3). Panels (a)-(b)
show a smear patch from the MP-IDB dataset with healthy and Plasmodium
falciparum-infected RBCs and the PCA visualization from which it is observable
how the model distinguishes background, cells, membranes, and parasites with
high responses, highlighting the latter structures. Panels (c)-(d) apply the same
approach to a brightfield image, revealing distinct features for echinocytes from
the DSA dataset. This behavior arises from self-supervised training alone. The
regions of interest are marked with black dotted boxes.
UMAP Visualization reveals batch effects within the feature space. Using
the Elsafty dataset (source 1), Figure 4 shows distinct clusters without subclus-
ters, indicating no batch across individuals. Nevertheless, overlapping classes
(Rounded RBCs, Ovalocytes, and Borderline Ovalocytes) remain hard to sepa-
rate due to the lack of clear clinical thresholds. Clumps form distinct clusters,
confirming the model’s ability to differentiate single cells from agglomerations.

CO2 Emissions from Experiments. Our experiments were run on our in-
house infrastructure, using the NVIDIA A100SXM4-80GB hardware; the total
emissions are estimated to be 4.15 kg CO2eq.

4 Conclusion

In this paper, we present RedDino, a cutting-edge foundation model specifically
designed for RBC analysis. By leveraging self-supervised learning techniques,
particularly a custom DINOv2 architecture, our models demonstrated superior
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Fig. 4. Different classes show distinct clusters in the UMAP projection of the feature
embeddings from the Elsafty dataset source 1. On the left, we show the subject distri-
bution across the UMAP space (each patient identified by a unique identifier), while
on the right, we show the class distribution.

generalization across a wide range of RBC datasets, effectively mitigating chal-
lenges such as the batch effect. The extensive range of experimentations con-
ducted, including an extensive comparative investigation and multiple scenario
evaluations, confirm that RedDino achieves state-of-the-art performance in RBC
classification, surpassing previous baselines. The model’s ability to adapt to dif-
ferent data sources, imaging protocols, and patient populations demonstrates
its robustness and potential for clinical applications. RedDino sets a new stan-
dard for RBC analysis and offers a strong foundation for future advancements
in automated hematological diagnostics.
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