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Abstract. Human tissue samples exhibit remarkable cellular and struc-
tural diversity, where alterations in the spatial arrangement of cells can
signal the onset or progression of disease. Therefore, characterizing these
spatial cellular interactions and linking them to clinical endpoints is crit-
ical to advance our understanding of disease biology and improve patient
care. In this work, we introduce a band descriptor that quantifies the local
neighborhood of each cell by computing the relative abundance of neigh-
boring cell types using concentric bands. We demonstrate the efficacy
of our approach by highlighting two key benefits: it enables the unsu-
pervised discovery of spatiotypes (substructures defined by local cellular
configurations), and it provides an explicit encoding of spatial context in
cell-level graphs — capturing long-range cell interactions across tissue.
Our experiments in a lung tissue cohort reveal distinct spatial patterns of
cellular arrangement that differentiate control from disease samples and
may also reflect disease progression (unaffected, less affected, or more
affected). Furthermore, by explicitly modeling spatial context, our band
descriptor enhances node-level representations, enabling an end-to-end
Graph Neural Network (GNN) to achieve high accuracy in a clinical
prediction task with fewer layers. This reduction in network depth de-
creases over-smoothing and improves interpretability, underscoring our
approach’s potential for broad adoption in tissue-based studies and clin-
ical applications. Code is available on GitHub1.
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1 Introduction

The spatial organization of cells within human tissues profoundly influences their
phenotypes, states, and biological behavior by modulating the signals they re-
⋆ Corresponding author: muhammad.dawood@ndcls.ox.ac.uk
1 https://github.com/imuhdawood/BandDescriptor
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ceive [1, 3, 20]. Whole Slide Images (WSIs) provide snapshots of this organiza-
tion, capturing rich morphological and spatial information in multi-gigapixel
scans [13]. However, analyzing WSIs at full resolution is computationally de-
manding. To address this, WSIs are typically partitioned into smaller patches,
from which statistical or morphological features are extracted and aggregated
for downstream tasks such as predicting disease status [14], molecular charac-
teristics [10, 17, 15], drug sensitivity [11], or patient survival [18].

Current aggregation approaches can be broadly classified as either spatially
unaware or spatially aware [7]. Spatially unaware methods, often employing mul-
tiple instance learning (MIL), treat each WSI as a “bag” of patches and aggregate
patch-level scores without modeling their spatial relationships. In contrast, spa-
tially aware methods utilise a graph representation — where each node denotes
a spatial region or patch — capturing a bespoke local context via node fea-
tures [23, 9]. A GNN is then trained to capture information from close proximal
nodes using message passing [17, 8]. While both strategies have shown promise
in several predictive tasks [9, 7, 16, 11], they frequently overlook local cellular
microenvironments — essential determinants of tissue function and disease out-
comes [21].

Recent progress in image-based transcriptomics, which provides single-cell
resolution of gene expression and cellular/nuclear boundaries, requires a spatially
resolved analysis that can be linked to biological hypotheses or questions [3,
21, 19]. Although graph-based models can, in principle, incorporate these rich
features, capturing long-range interactions within a tissue often demands deep
architectures that risk oversmoothing and reduced interpretability [26]. More-
over, in addition to predicting clinical endpoints, these data warrant identifying
spatial cellular microenvironmental patterns linked to disease.

To address these gaps, we propose a band descriptor that captures local cel-
lular arrangements around each cell using concentric bands, preserving the mi-
croenvironmental context essential for understanding disease. Leveraging these
descriptors, we discover spatiotypes in an unsupervised manner and enhance
GNN-based prediction, integrating single-cell detail with tissue-scale analyses.
In lung tissue samples, the spatiotypes uncovered by our approach effectively
distinguish control and disease groups while also predicting disease state. Fur-
thermore, incorporating the band descriptor into shallow GNNs boosts accuracy,
mitigates oversmoothing, and improves interpretability of node-level prediction
scores, underscoring its potential for clinical applications.

2 Dataset

To evaluate our approach, we used lung tissue data from a recent study that
profiled 343 genes in 45 lung tissue samples, including 9 from unaffected donors
and 26 from lung transplant recipients with pulmonary fibrosis, with some pa-
tients contributing multiple sections [21]. The study used the Xenium platform
(10x Genomics), an image-based spatial transcriptomics technology that pro-
vides high-resolution spatial transcript data, cellular and nuclear boundaries,
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while preserving tissue for post-run H&E staining. Based on marker gene ex-
pression, the authors classified cells into four key lineages: epithelial, endothelial,
mesenchymal, and immune cells, which we used in this study. We restricted our
analysis to coarse-grained as these could be also be inferred from morphology.

3 Methods

4 Band Descriptor

As illustrated in Figure 1, we begin with a WSI where each detected cell has a
spatial location (centroid) and an assigned type. Building on existing work on
shape and context descriptors [2, 4, 5] we construct a local neighborhood consist-
ing of concentric circles of different radii that are centered on a cell of interest.
In each radial band defined we quantify the spatial distribution of neighboring
cell types, forming a multi-scale descriptor that encodes both immediate and
distant neighborhood composition.

GNN

Spatiotypes

Type 1
Cell Type

Cells Centroids Band Descriptor Cell Descriptors Use Cases

Bands

Type 3
Type 2

Type 4
Focus

Fig. 1. Overview of our proposed band descriptor approach. (Left) Cell centroids,
color-coded by type, within a tissue image. (Second) A focal cell (star) surrounded by
concentric bands [0, r1), [r1, r2), [r2, r3), capturing multi-scale neighborhood composi-
tion. (Third) Computed band descriptors for each cell type, quantifying the fraction
of neighboring cell types within each band. (Right) Example applications include spa-
tiotype discovery (via clustering) and clinical endpoint prediction using a graph neural
network (GNN).

To formalize this approach, we consider a dataset D = {(xi, yi, ti, si) | i =
1, . . . , N}, where each cell has a location (xi, yi), type ti ∈ T , and an associated
tissue section or slide (si ∈ S). To capture the microenvironment of a given
cell i, we define a strictly increasing sequence of radii {rk}K+1

k=1 , where r1 = 0.
Each concentric band (or ring) k ∈ {1, . . . ,K} then corresponds to the distance
interval [rk, rk+1). Specifically, the k-th ring around the cell i is:

βk
i = {j ̸= i : sj = si, rk ≤ d((xi, yi), (xj , yj)) < rk+1} .
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where d(·, ·) is a spatial distance metic. For a given cell type T ∗ ∈ T , we
define the subset D(T∗) = {i | ti = T ∗}. For each cell in i ∈ D(T∗), we quantify
the composition of different cell types t ∈ T in ring k as:

fk
i,t =

1

|βk
i |

∑
j∈βk

i

1{tj = t},

In the above equation |βk
i | is the number of neighbors in ring k, and 1{·} is the

indicator function. We then concatenate these band-level cell fractions across all
rings k = 1, . . . ,K to obtain a comprehensive microenvironment descriptor of
cell i:

hi =
(
f1
i,1, . . . , f

1
i,|T |, f

2
i,1, . . . , f

2
i,|T |, . . . , f

K
i,1, . . . , f

K
i,|T |

)
,

The vector hi ∈ R|T |×K captures the multi-scale spatial composition of a
cell’s neighborhood, forming the basis for subsequent analyses of spatiotypes
discovery or incorporating spatial context into a GNN.

5 Unsupervised Discovery of Spatiotypes

Cells of the same type can exhibit different spatial arrangements, reflecting differ-
ent local environments. To uncover these spatial cellular patterns (spatiotypes),
we cluster the band descriptors hi of cells of a given type T ∗ into C groups using
a Gaussian Mixture Model (GMM), assigning each cell i a refined microenviron-
mental subtype label t̂i = T ∗

(ci)
. This label encodes the spatial relationship of a

cell with surrounding cell types. For example, among immune cells (ti = “Im-
mune”), type 1 may correspond to immune cells predominantly surrounded by
other immune cells, while type 2 may capture those adjacent to stromal cells,
reflecting different spatiotypes. Repeating this for each T ∗ refines broad cell-type
categories into interpretable subtypes that capture tissue-specific patterns.

The proposed approach is inherently explainable: the band-level descriptor
hi for each cell provides summary statistics detailing the composition of its
microenvironment. Visualizing these statistics for each GMM-derived spatiotype
provides insights into the underlying spatial patterns and tissue organization.
These spatiotypes could also be used as node-level features in a GNN.

5.1 Modeling Context in a GNN for Clinical Endpoint Prediction

To assess the predictive utility of the proposed band descriptor hi, we repre-
sent the WSI of each tissue sample as a cell-level graph G = (V,E). Here, each
node vi ∈ V corresponds to a detected cell, and edges in E capture spatial ad-
jacency based on Delaunay triangulation — connecting any two cells vi and vj
that share a simplex and satisfy d(vi, vj) ≤ 50µm. Building on the SlideGraph∞

framework [10], we employ a stack of EdgeConv layers [24] to learn aggregated
node embeddings over an l-hop neighborhood in an end-to-end manner using
pairwise ranking loss. We hypothesize that incorporating hi directly as a node
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representation captures both fine-grained (proximal bands) and long-range (dis-
tal bands) spatial interactions, thereby facilitating a direct link between cellular
organization and clinical endpoints. Additionally, it enhances interpretability by
leveraging a simple linear model to explain node-level predictions from Slide-
Graph∞, thereby revealing key spatial cellular arrangements that drive predic-
tive signals.

6 Experiments and Results

6.1 Unsupervised Discovery of Clinically Relevant Spatiotypes

Experimental Design We computed the band descriptors for each major cell
(endothelial, mesenchymal, epithelial, and immune) using five concentric bands
with radii of [100, 200, 300, 400, 500]µm. The resulting cell-level descriptors were
then clustered using a Gaussian Mixture Model (GMM), yielding 3 endothelial, 5
mesenchymal, 2 epithelial, and 6 immune spatiotypes. Each spatiotype captures
a distinct pattern of spatial cellular composition (Figure 2A).

Quantitative Results At the patient-level, proportions of these spatiotypes
differed significantly between control and disease groups and provides insights
into disease trajectory (see Figure 2B). For instance, Endothelial-1 (endothe-
lial cells surrounded by immune cells and loosely packed mesenchymal cells)
shows a decreasing pattern of enrichment from unaffected to more fibrotic tissue
(FDR-corrected p-value < 0.05 from a two-sided Wilcoxon test), suggesting that
immune cell interactions contribute to vascular homeostasis. As this protective
environment declines, endothelial dysfunction may set in, potentially driving
vascular changes that promote fibrosis [6, 12]. Additionally, certain spatiotypes
were exclusive to either disease or control groups. For example, Immune-2 (im-
mune cells densely clustered with other immune cells) are present only in fibrotic
cases. Our findings align with a recent study reporting an increased proportion
of immune cells in pulmonary fibrosis [25]. These results suggest that, despite
being identified through a data-driven approach, spatiotypes can provide mean-
ingful insights into the spatial cellular landscape and its connection to disease
status and progression.

Visual Results To validate these findings spatially, we present example plots
comparing a more fibrotic and a normal case (Figure 2C). Consistent with the
boxplot results, the fibrotic sample shows a higher proportion of Immune-2
(shown in blue), while in the normal case, most immune cells are in an Immune-
1 microenvironment. Similarly, in the fibrosis, endothelial cells exhibits both
Endothelial-1 and Endothelial-2 spatiotype, whereas the normal case is enriched
only for Endothelial-1, which based on the boxplot analysis is associated with
normal tissue.
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Fig. 2. Unsupervised Discovery of Clinically Relevant Spatiotypes. (A) Heatmap of
distinct spatiotypes (columns), each capturing a unique spatial pattern of cellular
composition, identified through unsupervised analysis. Rows correspond to spatial radii
(100–500 µm), illustrating how cell composition varies across spatial scales. Spatiotypes
are grouped by major cell lineages: endothelial, epithelial, immune, and mesenchymal.
(B) Boxplots depicting the enrichment of spatiotypes across samples, stratified by dis-
ease status (Control vs. Disease) and disease state (Unaffected, Less Affected, More
Affected). (C) Spatial maps comparing fibrotic (top) and control (bottom) lung tissue.
The first column visualizes cell centroids colored by cell type (using the same colormap
as in heatmap (A)). The remaining columns highlight spatiotype enrichment for each
cell lineage, demonstrating differential spatial patterns between control and fibrotic
samples.

7 Clinical Endpoint Prediction Using Graph Neural
Networks

7.1 Experimental Setup

We demonstrate how the proposed band descriptor can be used to incorporate
spatial context into a GNN for classifying unaffected versus more affected lung
tissue. Below, we detail the experiments conducted to illustrate how different
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Fig. 3. (Left) AUROC for different node-level features across GNN layers. (Right)
AUROC for cell-type-only GNN across increasing layers. Statistically significant results
from a two-sided wilcoxon rank-sum test, corrected for false discovery, are indicated
with asterisks: *p < 0.05, **p < 0.01, and ***p < 0.001 in the (Left) plot.

node-level embeddings in a cell graph influence both predictive performance and
model interpretability which are divided into the four different groups:

1. Cell types: One-hot encoding of cell types (endothelial, mesenchymal, ep-
ithelial, immune).

2. Band descriptors: Cell level band-descriptor without explicit cell-type en-
coding.

3. Cell types + band descriptors: Cell types combined with band descrip-
tors.

4. Spatiotypes: Each node labeled by its spatiotype (discovered in Section 7).

7.2 Results

We assess the impact of different node-level embeddings using patient-level strat-
ified bootstrapping (67% training, 33% testing, 20 repetitions). For each test set,
we report the area under the receiver operating characteristic curve (AUROC)
as the performance metric.

As shown in Figure 3, the band descriptors with a single-layer GNN achieves
an AUROC of 0.92 ± 0.18, significantly outperforming cell types alone (0.63 ±
0.31). The spatiotypes yields a higher AUROC (0.73 ± 0.34) compared to cell
types but remains notably lower than the band descriptors. Additionally, com-
bining both cell types and the band descriptors provides a slight improvement
(0.93±0.16) in predictive performance compared to either feature alone. At two
layers, the band descriptors, cell types + band descriptors, and spatiotypes all
achieve an AUROC of 1.00, whereas cell types alone improve to 0.85± 0.22. No-
tably, cell types require a deep, nine-layer GNN to reach an AUROC of 1.00 (see
Figure 3), whereas the same GNN, when leveraging the band descriptor, achieves
the same accuracy with only two layers — reducing the risk of over-smoothing
and improving the interpretability of node-level scores [26].
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Node-level
Features

(α, λ) R2 MSE MAE

Environ (0.001, 0.10) 0.451 (0.075) 0.021 (0.002) 0.123 (0.005)

Band Descriptor (0.001, 0.10) 0.921 (0.038) 0.001 (0.001) 0.023 (0.007)

Cell Type (0.001, 0.10) 0.226 (0.062) 0.020 (0.002) 0.119 (0.006)

Table 1. Node-level score prediction using different feature descriptors. Here, α and
λ are the L1 and L2 regularization penalties, respectively, and the rest of columns
reports mean (standard deviation) of model across 5 cross-validation runs in terms of
R2, mean squared error (MSE) and mean absolute error (MAE).

7.3 Interpretability

We analyzed the interpretability of node-level scores using three types of node
embeddings: cell types, band descriptors, and spatiotypes. To assess this, we fit
an Elastic-Net regression model to predict node importance scores from node-
level features. After optimizing regularization parameters, we evaluated model
performance using mean squared error (MSE), mean absolute error (MAE), and
R2 score, as shown in Table 1. From the results, using the band descriptors
with a 2-layer GNN enabled highly accurate node-level predictions, achieving
a significantly higher R2 score compared to using cell type information with a
9-layer GNN. This demonstrates that the band descriptor not only improves
accuracy but also enhances interpretability — critical for clinical applications.
Additionally, visualizing feature contributions allows us to identify key spatial
bands around a cell that drive predictions.

8 Discussion & Conclusion

Our results highlight two key contributions of the proposed band descriptor.
First, by encoding the spatial composition of different cell types around each
cell using concentric bands, it enables the discovery of spatiotypes that differen-
tiate disease samples from controls in an interpretable and clinically meaningful
way. Second, by explicitly modeling multi-scale spatial context within a GNN
through enriched cell-level representations, our descriptor achieves high predic-
tive performance even with a shallow architecture, reducing the need for deeper
networks that often risk over-smoothing. Unlike most methods that achieve ex-
plainability post-hoc, our approach inherently integrates spatial context into
the model, enabling direct and clinically meaningful interpretability without re-
quiring additional explanation techniques — striking a crucial balance between
accuracy and interpretability in clinical applications [27, 22].

Beyond lung fibrosis, analogous to shape context features used for detection
and information retrieval, the proposed band descriptor supports broader appli-
cations across diverse tissue types and spatial omics platforms, including multi-
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plex fluorescence imaging and high-dimensional spatial transcriptomics. It seam-
lessly extends to 3D imaging modalities, addressing the challenge of capturing
spatial structures in volumetric data. It can be adapted for the targeted analysis
of spatial transcriptomic patterns, ultimately bridging single-cell or transcrip-
tomic resolution with tissue-scale analyses.
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