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Abstract. This paper introduces a novel user-centered approach for
generating confidence maps in ultrasound imaging. Existing methods,
relying on simplified models, often fail to account for the full range
of ultrasound artifacts and are limited by arbitrary boundary condi-
tions, making frame-to-frame comparisons challenging. Our approach in-
tegrates sparse binary annotations into a physics-inspired probabilistic
graphical model that can estimate the likelihood of confidence maps.
We propose to train convolutional neural networks to predict the most
likely confidence map. This results in an approach that is fast, capable
of dealing with various artifacts, temporally stable, and allows users to
directly influence the algorithm’s behavior using annotations. We demon-
strate our method’s ability to cope with a variety of challenging artifacts
and evaluate it quantitatively on two downstream tasks, bone shadow
segmentation and multi-modal image registration, with superior perfor-
mance than the state-of-art. We make our training code public.
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1 Introduction

Ultrasound imaging is a widely used diagnostic tool, valued for its non-invasive
characteristics, real-time imaging capabilities, and cost-efficiency. Confidence
maps aim at offering a quantitative assessment of the reliability of each pixel
within the ultrasound image, and have been successfully employed in various
applications, including intensity reconstruction [9], volume compounding [2], US-
CT registration [19], shadow detection [13] and deep learning segmentation [7].
Of particular interest is the use of confidence maps for probe positioning and
contact force optimization in robotic ultrasound [10,1,21,4,18]. Recent method-
ologies for quantifying uncertainty in B-mode ultrasound images encompass RF-
based techniques [13], shadow-specific neural networks [15], Ultra-NeRF based
approaches [22,23], and graph-based methodologies [12,11]. Existing methods
have different limitations: physics-based approaches overlook artifacts like re-
verberation [12,11], shadow-based models are restricted by design [15], arbitrary
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Fig. 1: Overview of our method, showcasing how sparse Good (red, high confi-
dence) and Bad (blue, low confidence) annotations are utilized to predict confi-
dence maps with a CNN in pre-scan converted space.

boundary conditions prevent frame-to-frame comparison [12,11], and limited con-
trol is offered, as correcting misassigned confidence requires complex modifica-
tions to the entire approach. We adopt a user-centered approach, recognizing
that ultrasound practitioners can effectively assess confidence. We rely on sparse
binary annotations (Good/Bad), similar to prior segmentation approaches [3,5],
and combine them into a physics-inspired probabilistic graphical model (PGM)
to estimate the likelihood of confidence maps. We then train a convolutional neu-
ral network (CNN) to predict the most likely confidence map. This results in an
approach that is fast, capable of dealing with various artifacts, user controllable,
and temporally stable.

2 Ideal Confidence Maps

Ultrasound transducers produce focused sound beams that are used to recon-
struct each image scanline [8,6]. The intensity of the echo that arrives back at
the transducer f(d) for a scanline from depth d can be modeled as

f(d) = p0︸︷︷︸
Initial

intensity

· exp

(
−
∫ d

0

r(t) + s(t)dt

)
︸ ︷︷ ︸

Attenuation

·
(
r↑(d) + s↑(d)

)︸ ︷︷ ︸
Scatter and reflection

toward transducer

, (1)

where r(d) and s(d) are the coefficients of the total energy reflected and scattered
in all directions, r↑(d) and s↑(d) the reflection and scattering coefficients in the
direction of the transducer respectively. This model does not account for multi-
path scattering / reverb. We also omit the change in incident pressure over depth,
caused by transmit focusing, the weakening of the echo due to the inverse square
law, as well as absorption, as we argue these effects are generally accounted for
in the signal processing chain, most importantly through the user chosen time-
gain-compensation. Overall, this model differs from the models used in [22,23],
as it considers off-axis reflection and scattering in the attenuation term. Based
on this physical model, an ideal confidence map should exhibit these properties:
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Fig. 2: Complex relationship between confidence and pixel intensities. (a): tissue
that blocks sound (bone) causing a weaker signal than a tissue that doesn’t block
sound (muscle). (b-c): different common ultrasound artifacts.

1. Mostly monotonic. Due to attenuation, the sound beam intensity de-
creases with depth, and therefore the confidence should also mostly decrease.
This is not a hard constraint since a weak sound beam that encounters a
strong reflector can still produce a clearly detectable echo.

2. Loosely related to pixel intensities. The sound beam attenuation de-
pends on the quantities r(·) and s(·), while the echo depends on r↑(·) and
s↑(·). See for example Figure 2a where the muscle tissue, which allows sound
transmission, is represented in the B-mode image with a higher brightness
than a bone, which blocks all further transmission. As further examples, Fig-
ure 2b depicts a shadow appearing without a bright reflection above it and
an increase in intensity in a shadowed area due to electronic noise. There-
fore, we argue that the relationship between confidence and pixel intensities
is complex and cannot be captured by simple models.

3. Beyond shadows. Ultrasound images present a variety of artifacts com-
monly including shadows (Fig. 2b), reverberations (Fig. 2c) and a combina-
tion of these when lacking acoustic coupling (Fig. 2b). An ideal confidence
map should not only properly handle these but also less common artifacts.

4. Sound beams-aware. Confidence map computation should consider the
direction of insonication, i.e. the method should compensate accordingly if
scanlines are tilted in non-linear fan geometries.

5. Horizontally smooth. While the sound beams are narrow, there is still
overlap between them due to the width of the point-spread function. There-
fore, any horizontal discontinuity in the confidence map would be unrealistic.

3 Approach

Given sparse annotations y, i.e. yi ∈ {Good,Bad,None}, we model the proba-
bility of a confidence map x using a Probabilistic Graphical Model (PGM) as
shown in Figure 3a. In this model, each confidence map pixel (xi) is a node in
the graph, and its confidence probability distribution depends on its annotation
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Fig. 3: (a) Graphical representation of the PGM used to combine sparse anno-
tations with a physics based prior. Refer to the text for the description of the
pairwise potentials ϕ , ψV , ψH . (b) Plot of the Probability Density Functions
(PDF) for the Beta distributions used in the definition of ϕ.

(yi) and the confidence of its neighboring pixels. According to Property 4 (see
above), we shape the graph distinguishing between intra- and inter-scanline re-
lationships. The former are shown with a directed arrow since they are causal
(Property 1), while the latter are symmetric. Formally, given sparse annotations
y, we define the probability of a confidence map x as

p(x|y) ∝
∏
i

ϕ(xi, yi)︸ ︷︷ ︸
Unary potentials

∏
(i,j)∈V

ψV (xi, xj)
∏

(i,j)∈H

ψH(xi, xj)︸ ︷︷ ︸
Pairwise potentials

, (2)

where the pairwise potentials are considered in vertical (V ) and horizontal (H )
direction, respectively. The reader might find surprising that the ultrasound
image intensities are not used by this model. Property 2 suggests that the relation
to pixel intensities is too complex to be incorporated in such a simple model.
Through the design of pairwise potentials, we thus limit this PGM to only enforce
an ultrasound physics prior, and leave the complex pixel intensity relationships
to the CNN that is trained on top of the PGM as described in Section 3.3.

3.1 Unary potentials to model sparse annotations

The unary potentials ϕ(xi, yi) measure the compatibility between the confidence
value xi and the corresponding annotation yi. We model this using a Beta dis-
tribution, whose parameters depend on yi:

ϕ(xi, yi) =


Beta(xi;α = 5, β = 1) if yi = Good
Beta(1− xi;α = 5, β = 1) if yi = Bad
Beta(xi;α = 1.1, β = 1.1) if yi = None

(3)
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As can be seen from Figure 3b, the distributions associated to Good and Bad
annotations are symmetric. We assume that areas with particularly high or low
confidence would are likely to be annotated, therefore, for None annotations, we
assign lower probability to the extremes.

3.2 Ultrasound Physics Prior with Pairwise Potentials

The pairwise potentials ψV and ψH enforce an ultrasound physics-inspired prior.
Intra-Scanline Potential The asymmetric potential ψV acts within scanlines
and encourages the confidence along the scanline to be mostly monotonically
decreasing according to Property 1. Since confidence is bound below by zero, once
a node’s confidence is close to zero, subsequent nodes in the same scanline cannot
decrease much further. Therefore, a penalty formulated using the confidence
values xi directly would discourage low confidence values from appearing further
from the bottom row. To address this issue, we instead employ log(xi), which
is not bound below. Given a desired decay in confidence between nodes s, we
penalize log(xj) + s− log(xi) taking positive values as follows:

ψV (xi, xj) = exp
(
−γmax(0, log(xj)− log(xi) + s)

)
, (4)

where γ is a parameter that controls the strength of this prior.
Inter-Scanline Potential Given Property 5, ψH is used to encourage smooth
transitions between scanlines. We achieve this by utilizing a Gaussian function:

ψH(xi, xj) = exp
(
−σ(xi − xj)

2
)
, (5)

where the parameter σ influences the strength of this prior. We empirically
determined the parameter values γ = 75 , s = 3

2560 , σ = 1
4 .

3.3 Convolutional Neural Network Training

We train a Convolutional Neural Network (CNN), which transforms an image I
into a confidence map, by maximizing the likelihood of its prediction according
to our probabilistic graphical model (2). Concretely, given a dataset of sparsely
annotated ultrasound images

{
(I(i), y(i))

}
, we optimize the parameters θ of the

CNN f(I, θ) to minimize the negative log-likelihood of each prediction:

θ∗ = argmin
θ

∑
i

− log p
(
f(I(i), θ), y(i)

)
. (6)

To ensure parallel, vertically aligned scanlines even for B-mode images with non-
linear fan geometry, e.g. when scanning with convex probes, we apply inverse
scan conversion as a preprocessing step (Figure 1). This paper focuses on an
alternative method for computing confidence maps rather than CNN architecture
optimization. We train a small U-Net [17] with ConvNeXt blocks [14] on a dataset
with 291 frames for training and 72 frames for validation. Our model achieved a
validation loss of 0.32, closely matching the training loss of 0.25. For details, refer
to our publicly available code3. On an NVIDIA RTX 4090, our model exceeds
2,300 fps making it suitable for real-time applications.
3 github.com/ImFusionGmbH/BeyondShadows

https://github.com/ImFusionGmbH/BeyondShadows
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Fig. 4: Ultrasound frames (before scan conv.), with confidence maps generated by
three methods. Red and blue represent high and low confidence, respectively.
The squares on the confidence maps show regions of interest. See text for details.

4 Evaluation

We compare the proposed approach with the methods of Karamalis et al. [12]
and Hung et al. [11]. Karamalis’ method models pixels as graph nodes with edge
weights derived from ultrasound physics, and computes confidence by solving a
random walk equilibrium problem with fixed top (1) and bottom (0) boundary
conditions. We use the public Python implementation available in MONAI4, set-
ting α = 1. Hung’s method reduces speckle in the image using an anisotropic fil-
ter and then employs a directed acyclic graph to propagate confidence downward
from the top row. We use the official implementation5 but set the parameters
α = 10−2 and ξ = 0.4 to avoid rapid confidence decay. We exclude from the
comparison the approach of [15] since we lack shadow specific annotations.

4.1 Qualitative Evaluation

Figure 4 depicts 7 representative frames (A-G), selected from the validation set.
While Frames A-F were acquired with the same setups as our training data,
Frame G comes from a completely different setup, demonstrating the general-
ization capabilities of our approach. Specifically, Frame G was acquired with a
different ultrasound machine and through a water bath for optimized acoustic
coupling, which causes the unusual artifacts visible on the left of the frame. Our
4 github.com/Project-MONAI/MONAI
5 github.com/aL3x-O-o-Hung/ultrasound-confidence-map-with-directed-graphs

https://github.com/Project-MONAI/MONAI
https://github.com/aL3x-O-o-Hung/ultrasound-confidence-map-with-directed-graphs
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Table 1: Random forest shadow segmentation using confidence maps. All rows
except the last one are reprinted from [23], see text for details.

Method Dice ↑ Hausdorff ↓ Precision ↑
Karamalis 49.3% 7.9 61.1%
Hung 47.6% 7.2 63.4%
Yesilkaynak 50.4% 5.6 71.5%
Ours 58.9% 6.2 86.8%

method excels in handling shadows, which are poorly managed by Karamalis’
and Hung’s methods (A-E). Of particular interest is Frame B’s partial shadow,
which is followed by a strong reflector (diaphragm). While other methods com-
pletely miss the shadow, our method detects it correctly and still assigns an in-
termediate confidence value to the diaphragm. Frame A and E’s strong shadows,
caused by missing probe contact, are completely mistaken by both competing
methods. Hung’s method manages to deal with reverberation (A, F) better than
Karamalis’, still our method provides the cleanest separation between visible
structures and artifacts. Visible structures at higher depths are mistakenly as-
signed low confidence by Karamalis and Hung (C, D, G). Finally, the proposed
method correctly recognizes the unusual skin appearance caused by the water
bath (G), even though such images were not part of the training data.

4.2 Quantitative Evaluation: Bone Shadow Segmentation

For a first evaluation of a downstream task, we build upon the work of Yesilka-
ynak et al. [23], who evaluated their confidence map estimation using a ran-
dom forest for bone shadow segmentation. While we could not include their
Ultra-NeRF-based approach [22] in Sec. 4.1 due to the requirement of perfectly
aligned ultrasound and CT volumes for the training phase, we utilized their pub-
licly available code6 and dataset, which consists of ultrasound frames and bone
shadow masks. First, we ran our proposed confidence estimation on all frames,
and then evaluated whether a random forest classifier could predict the shad-
ows without modification of the provided code to ensure a fair comparison, i.e.
leaving the bone shadow segmentation untouched. We reproduce the author’s re-
sults in Table 1 verbatim and added a row with our own method’s performance,
showcasing that without any task-specific objective in training and without any
finetuning, our method outperforms the state-of-art in terms of both Dice score
and precision.

4.3 Quantitative Evaluation: Registration Weighting

As a second downstream task, we validate the efficacy of our approach by uti-
lizing confidence as voxel weight for multi-modal intensity-based registration,
6 github.com/MrGranddy/Redefining-Confidence-Maps

https://github.com/MrGranddy/Redefining-Confidence-Maps


8 M. Ronchetti et al.

Table 2: Impact of using confidence as voxel weight for registration. A case
is considered “converged” if the Fiducial Registration Error after registration is
below 15 mm. The best results and the ones not significantly different (p > 10−3)
are highlighted in bold.

Converged cases w.r.t. initial error
Weight <25mm 25-50mm >50mm
Variance 69.7% 61.5% 47.9%
Karamalis 31.1% 25.5% 20.0%
Karamalis × Variance 70.4% 61.4% 48.4%
Hung 49.4% 34.7% 25.6%
Hung × Variance 70.7% 63.2% 48.4%
Ours 77.9% 68.2% 53.5%
Ours × Variance 78.7% 71.1% 57.5%

thereby replacing the conventional use of patch variance as the weighting factor
[20]. To facilitate a direct comparison, we repeat the evaluation approach used in
[16], which involves performing ultrasound fusion on a challenging dataset and
reporting the number of converged cases across various algorithm variants. Our
dataset includes 28 tracked liver clips from two different machines, with posi-
tional information obtained through optical tracking. Each clip is paired with
a CT or MR volume, with at least 4 corresponding landmark pairs manually
annotated by an expert. For each clip, we compute the confidence of all frames
individually, and reconstruct a 3D confidence volume. We experiment with using
confidence directly and multiplying it by the local patch variance. As can be ob-
served in Table 2, our method was able to support the registration to converge
in a significantly higher number of cases than established approaches.

5 Conclusions

We introduced a novel user-centered approach for generating confidence maps in
ultrasound imaging, overcoming limitations of traditional methods with simpli-
fied assumptions of ultrasound physics. Our CNN training incorporates a prob-
abilistic graphical model, combining sparse annotations with a physics-inspired
prior. A qualitative evaluation demonstrated robustness and accuracy in the
presence of a broad variety of typical ultrasound artifacts using diverse trans-
ducer geometries, different ultrasound systems, and acquisition environments.
Quantitative tests, using confidence maps for shadow detection and multi-modal
registration, highlighted our method’s potential for downstream tasks. Notably,
our method improved state-of-the-art bone shadow segmentation and ultrasound
fusion algorithms. Its speed and reliability make it suitable for clinical applica-
tions where real-time evaluation is needed. Future work includes integration into
clinical workflows and extending the approach to 3D ultrasound for volumetric
analysis.

Disclosure of Interests. The authors have no competing interests.
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