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Abstract. In clinical decisions, trusting erroneous information can be as
harmful as discarding crucial data. Without accurate quality assessment
of medical image segmentation, both can occur. In current segmenta-
tion quality control, any segmentation with a Dice Similarity Coefficient
(DSC) above a set threshold would be considered "good enough", while
segmentations below the threshold would be discarded. However, those
global thresholds ignore input-specific factors, increasing the risk of ac-
cepting inaccurate segmentations into clinical workflows or discarding
valuable information. To address this, we introduce a new paradigm for
segmentation quality control: image-specific segmentation quality thresh-
olds, based on inter-observer agreement prediction. We illustrate this on
a multi-annotator COVID-19 lesion segmentation dataset. To better un-
derstand the factors that contribute to segmentation difficulty, we cat-
egorize radiomic features into four distinct groups - imaging, texture,
border and geometrical - to identify factors influencing expert disagree-
ment, finding that lesion texture and geometry were most influential.
In a simulated clinical setting, our proposed ensemble regressor, using
automated segmentations and uncertainty maps, achieved a 5.6% MAE
when predicting the mean annotator DSC score, enhancing precision by
a factor of two compared to case-invariant global thresholding. By shift-
ing to image-specific segmentation quality levels, our approach not only
reduces the likelihood of erroneous segmentations but also increases the
chances of including accurate ones in clinical decision-making.
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1 Introduction

Medical decisions are routinely based on radiological parameters [1]. Those are
often a direct quantification derived from an underlying medical image segmen-
tation, increasingly performed by AI models. However, if the Al segmentation
is erroneous, the influenced diagnosis or treatment choice can put patient in-
tegrity at risk. Similarly, if the segmentation is accurate but distrusted, the
practitioner would be deprived of a key clinical parameter. Therefore, being able
to discriminate between good and bad segmentations is necessary for clinical
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practice. This task is known as segmentation quality control. As visual control
is time-consuming and error-prone, its automatization is desirable [2-6].

To be objective, segmentation quality control needs to rely on a scaled and
interpretable metric, like the Dice Similarity Coefficient (DSC) [7]. To be com-
plete, quality control must also provide, along the raw metric, a value, or interval
of metric values, from which this segmentation can be considered good: a qualita-
tive threshold. Without these thresholds, it is impossible to distinguish between
correct and erroneous segmentations—rendering quality control ineffective.

Related work. However, existing quality control methods have largely over-
looked this crucial step [2-6], in spite of inter-observer analyses across various
medical segmentation tasks having consistently shown that acceptable DSC lev-
els can vary, particularly depending on the anatomical region [7]. The current al-
ternatives are either blindly selecting a threshold without considering the specific
task or using inter-observer global thresholds that fail to account for the char-
acteristics of individual inputs. Inter-observer global thresholding calculates an
average metric value between experts across an entire dataset [8]. This imposes
a rigid quality threshold that, despite significant inter-observer DSC variations,
assumes all images are equally difficult to segment. It disregards factors such
as image quality, region texture, size, and geometry. However, these features
strongly correlate with segmentation difficulty, as we will statistically demon-
strate, in contrast to previous attempts at understanding the causes of inter-
observer segmentation variability, which were more visual in character [19].

In practice, this blind spot in quality control means that segmentations that
should be deemed inadequate—based on input characteristics can still pass into
the clinical workflow. However, a potential solution exists, as the level of inter-
observer agreement directly reflects segmentation difficulty. Thus, predicting the
former can serve as an estimate of the latter, even at a case-specific level. This
approach has not yet been explored, as multiple annotators have primarily been
employed to model aleatoric uncertainty [16—18] or to investigate the relationship
between inter-observer variability and model uncertainty [20].

Contributions. Our key contributions are as follows:

1. We demonstrate significant variations in segmentation difficulty within the
same task, underscoring the limitations of global quality thresholds for qual-
ity control in clinical practice.

2. We provide statistical evidence that segmentation difficulty is strongly influ-
enced by specific input properties.

3. Finally, we propose a novel method with a two-fold increase in precision for
dynamically predicting segmentation difficulty, enhancing the reliability of
clinical applications.

2 Are all COVID-19 lesions equally difficult to segment?

COVID lesions occur when the inflammatory response to the infection damages
the alveolar epithelium, leading to the infiltration of interstitial fluid, pus, cel-
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lular debris, and even blood into the alveolar sacs. This filling can be partial
(ground-glass lesion, Hounsfield Unit (HU) from -700 to -100 HU) or complete
(consolidation, 0 to +100 HU), diffused in the lung or focal, minimal, mild or
severe. It follows no systematization in terms of location, size, shape, intensities
in CT-scan [10]. As such, their segmentation constitute a proper mean to study
how inter-observer segmentation agreement changes with structure appearance
and geometry (more so than organs).

We utilize a multi-annotator dataset containing 7,740 low-dose computed-
tomography (CT) image slices (2D) with COVID19 lesions [9]. It has a homoge-
neous repartition of lesion extent and severity according to the chest tomogra-
phy severity score (CT-SS) developed by Yang et al [11]. The lung lesions were
segmented by 3 radiologists: Observer 1 (Obs1A) with 5 years of experience;
Observer 2 (Obs2) with 3 years of experience; Observer 3 (Obs3) with 3 years of
experience. The operator of reference (Obs1A) produced another round of seg-
mentations, Obs1B, 2 weeks after the ground-truth segmentation. In addition to
the lesions, an annotation of healthy lung tissue was also available.

2.1 Fluctuations in cross-expert agreement: difficulty is case-specific

For each operator, the DSC index was calculated for each slice versus ObslA.
From the vector of inter- and intra-operator scores, the mean (henceforth named
the "DSC Lesion") was computed per slice and considered as per-slice threshold
of quality, as well as reflecting intrinsic segmentation difficulty. The dataset’s
mean DSC Lesion was 68% (+£13%). Fig. 1 shows an example of cases with high
and low agreement. The distribution of DSC Lesion scores is displayed in Fig. 2.

As can be seen from Figs. 1 and 2, the segmentation difficulty, as quantified
by the DSC Lesion score, varies substantially from image to image.

CcT Expert 1 Expert 2 Expert 3 CNN Uncertainty

High agreement
case
(Patient DSC: 0.85)

Low agreement . i

case r .

(Patient DSC: 0.56)

Fig. 1. Illustration of changes in inter-observer level of agreement across cases, which
reflect segmentation difficulty. Top row: high agreement; bottom row: low agreement.
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DSC Lesion

Fig. 2. Density plot of the slice-level distribution in DSC Lesion, averaged or individ-
ually. Global quality thresholds would reject all segmentations below 0.68.

3 Methods: Understanding and adapting to varying
segmentation difficulty levels

Below, we describe a systematic investigation of which radiomic image features
contribute most to segmentation difficulty, and use this insight to propose image-
specific quality thresholds for dynamic and conditional inclusion of "good" seg-
mentations given their input properties. An overview of our investigation is found
in Fig. 3.

3.1 Which factors modulate the segmentation difficulty of
COVID19 lesion?

For this study we assume a consistent skill level among annotators, and inves-
tigate if some specific input properties can be shown to consistently increase or
lower segmentation difficulty. To do this, we will extract radiomical descriptors
from the inputs and correlate them with DSC Lesion. Summarized in Table 1,
the descriptors were categorized into four groups to isolate their influence on
segmentation difficulty, ensuring that each group primarily reflects one aspect of
the image or lesion:: imaging, geometry, texture, or border-related information
(Fig. 3). Each feature’s impact on the DSC Lesion score was then measured
using the Pearson correlation coefficient.

To further rank as a whole the different groups, each group had their as-
sociated variables used as input in a Ridge regression to predict DSC Lesion.
30-fold (one per patient) cross-validation evaluated the capacity of each group
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Fig. 3. Overview of our investigation of the causes behind inter-observer variability.
DSC Lesion: Dice Similarity Coefficient as averaged between experts; GT: ground truth.

Geometrical
features

Table 1. Summary of distinct groups of input descriptors. SNR: signal-to-noise ratio;
positional orthodoxy score: a value between 0 and 1 that reflects the alignment between
the lesion’s position in the lung and its positional frequency across the entire dataset.

Distinct Group Input Extractor / Descriptor
Pyradiomics, energy gradient, Laplacian variance,
CT Crop in healthy |Fourier SNR, 8-level Daubechies db2 wavelet

lung region transform analysis (dominant scale, scale ratio,
energy variance, fractality)
Lesion texture |CT Crop in the lesion|Same as 'Imaging’ group
2 adjacent CT crops [Same as 'Imaging’ group for both crops,
Lesion border inside & outside |the ratio between the two values for each
the lesion descriptor was then computed.
Basic: Perimeter, area, maximum diameter,
major and minor axis lengths, elongation, sphericity.
Connectivity: number of connected components and
Lesion geometry| Binary GT mask |holes.
Position: positional orthodoxy score.
Complexity: perimeter-to-surface ratio, Fourier SNR,
8-level Daubechies dbl wavelet analysis

Imaging

to explain segmentation difficulty. MAE at slice and patient-level then served as
a comparison basis.

3.2 Segmentation difficulty prediction for improved quality control

Having seen that segmentation difficulty is a function of the input, we try to
predict input-specific quality thresholds from an Al-segmented CT slice, Fig. 4.
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Fig. 4. Predicting dynamic segmentation quality thresholds. DSC Lesion: Dice Simi-
larity Coefficient as averaged between experts.

Two U-Nets, implemented following [9], were trained on a separate set of
144 CT volumes annotated by Obsl, and used for inference on 7,740 slices as
input. The pixel-wise average of their respective softmax outputs was used as
final deep learning segmentation, from which radiomics were extracted, while
their standard deviation gave uncertainty maps (UM), from the following were
computed: entropy, mean, standard deviation, various percentiles, percentage of
pixels with uncertainty superior to given thresholds.

To study whether those deep learning outputs could be used to predict DSC
Lesion, we trained: (a) a Ridge regression with radiomics features and uncer-
tainty maps-derived metrics as input, (b) a 62-layer ResNet with bottleneck
residual structure with CT, prediction and UM as input. (a) a Ridge regression
with radiomics features extracted from the lesion prediction as input; (b) same
as (a) with uncertainty maps-derived metrics as additional input; (c) ResNet
(ResNet with Mish activations [21]) regression model with image and CNN pre-
diction as input; (d) similar to (c¢) with uncertainty map as supplementary input;
(e) ensemble model taking mean between the best Ridge and Mish-ResNet mod-
els. The base model was a 62-layer ResNet with a bottleneck residual structure.

4 Experiments

4.1 Which factors modulate the segmentation difficulty of
COVID19 lesion?

The first column of table 2 reports the maximum correlation observed in each
distinct group of descriptors.

The ridge regression MAE at slice and patient-level then served as a compar-
ison basis and are reported in the second and third columns of table 2, respec-
tively. Here, we see that texture and geometrical characteristics had the biggest
impact on the inter-observer segmentation variability, with maximum absolute
pearson coefficient of -0.57 and -0.56, respectively, in front of border and image
information (-0.30 and -0.25, respectively). Three main kinds of texture exist:
uniform, fragmented or noisy, and hybrid. According to the analysis, lesions with
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Table 2. Which input aspect explains most expert segmentation disagreement? Four
groups of descriptors (imaging, texture, border, and geometrical features) are individ-
ually related to inter-observer variability. Max correlation: highest (absolute) pearson
correlation with DSC Lesion from one variable in the group. MAE: Ridge regressor
mean absolute error when predicting DSC Lesion only using features from a group.

Distinct Group|Max correlation| MAE Slice |MAE Patient
Imaging -0.25 11.0 +3.0%| 6.8 £ 4.4 %
Texture -0.57 7.8+ 3.0%|51+35%
Border -0.30 86 +20% 4.8 £3.6%
Geometry -0.56 80+30%|55+46%

Table 3. Performance in case-specific quality threshold prediction. MAE: mean abso-

lute error; DSC: Dice Similarity Coefficient. UM: uncertainty map.

Input / Method |MAE DSC Lesion| Good slices included | Bad slices rejected
Global Thresholding| 10.0 + 8.3 % 76.2% (2846,/3734) | 73.8% (2958,/4006)
Ridge w/o UM 6.4+59 % 86.3% (3222/3734) | 85.6% (3430/4006)
Ridge w. UM 6.2+ 59 % 87.0% (3248/3734) | 86.1% (3449/4006)
ResNet w/o UM 6.5 £ 6.0 % 86.5% (3230/3734) | 84.2% (3373/4006)
ResNet w. UM, 624+ 60% | 83.6% (3120/3734) |88.2% (3535,/4006)
Ensemble w. UM 5.6 +£ 5.5 % |87.7% (3274/3734)| 87.3% (3500/4006)

noisy and very fragmented texture were the most difficult to segment: the de-
scriptor with highest absolute correlation with segmentation difficulty was short
run emphasis, which reflects a texture where runs, i.e. sequence of consecutive
pixels with identical intensity, are mostly shorts, typically in fragmented tex-
tures. The easiest cases had more hybrid texture combining uniformity (long-
run emphasis had a correlation of 0.40) with variations at larger scale (gray-level
non-uniformity has a correlation of 0.43). Looking at the geometry, the most de-
terminant factor was complexity, as measured the perimeter over the area (-0.56)
or by the wavelet-derived fractality dimension (-0.56). Interestingly, geometrical
complexity was even more predictive than the region size (0.49). The location of
the lesions in the lung had no significant impact (0.16).

4.2 Segmentation difficulty prediction for improved quality control

MAE errors when predicting DSC Lesion are compared with the global threshold-
ing approach (which always predicts the dataset averaged DSC Lesion) in second
columns of table 3. To evaluate the capacity of the predicted quality threshold
to reduce the number of wrongly included/excluded, we independently sample
7,740 synthetic DSC (one per slice in the dataset) following a gaussian distribu-
tion with 0.68 mean and 0.13 standard deviation. Each sampled DSC superior
to the GT DSC Lesion is judged acceptable. The number of misclassified DSC
is recorded for both methods in the second column of table 3.

The radiomical extractor performed similarly to the ResNet approach. Both
were slightly enhanced by adding uncertainty map information. The ensemble
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almost divided by two the error (from 10.0 + 8.3 % to 5.6 + 5.5 %) associated
to the global thresholding baseline methodology. In addition, it could drastically
increase the likelihood of accepting good slices and rejecting inaccurate slices.

Coming back to the two patients highlighted in Fig. 1, the global thresholding
method would associate 0.68 as quality threshold for both, while our ensemble
did detect the difference of difficulty, predicting a DSC Lesion of 0.82 (GT: 0.85)
for the first one, and 0.60 (GT: 0.56) for the second.

5 Discussion and conclusion

Until now, most automatic quality control approaches have focused on predict-
ing a single metric, typically the DSC, without providing an objective way to
translate the predicted value into a definitive judgment on the clinical value of
the segmentation [2-6]. This work highlighted this drawback and proposed a
solution.

Understanding the factors behind segmentation difficulty is crucial for high-
lights challenging cases to the annotators and clinical user, which in return can
improve ground truth production and quality control. It can also provide a ratio-
nale, rather than mere empirical determination, for why acceptable DSC levels
vary across different medical segmentation tasks. Bayat et al. developed a visual
method for understanding the reasons of inter-observer variability by tracking
comments and mouse movements during segmentation [19]. While their approach
focused on recording operator behavior, we statistically identified specific causes,
with texture fragmentation and geometrical complexity as the key factors.

Segmentation datasets with multiple annotations have previously been used
to quantify and validate aleatoric uncertainty [16-18, 12, 13, 22]. Indeed, the "seg-
mentation difficulty" used to quantify segmentation quality in this work is related
to aleatoric uncertainty, and our prediction of DSC lesion as a predicted diffi-
culty level can be though of as predicting a property of the distribution over
segmentations estimated by aleatoric uncertainty models. The potential of us-
ing uncertainty outputs for quality control was highlighted by [18], but only as
a general suggestion. Indeed, it remained unclear how uncertainty maps could
objectively classify segmentations as good or bad without relying on subjec-
tive radiologist interpretation. Our results show that uncertainty maps can be
integrated into quality threshold prediction to enhance performance.

The limitations of this work are: (1) our study did not account for the human
component (such as skill level, fatigue, and adherence to annotation protocols),
which undoubtedly plays a significant role but is much harder to extract; (2) we
demonstrated the utility of image-specific quality control for COVID-19 lesions,
further research could explore the applicability of this paradigm to other medical
imaging tasks with varying degrees of complexity and inter-observer variability.

In conclusion, our approach of using image-specific segmentation quality
thresholds significantly improves the accuracy of quality control over traditional
global thresholds, particularly in cases with high inter-observer variability like
COVID-19 lesions. By accounting for key factors such as region texture, ge-
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ometry and uncertainty maps this method reduces the likelihood of erroneous
segmentations affecting clinical decision making.
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