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Abstract. Brain Wiring Knowledge Graph is a high-level abstraction
from a physical neuronal wiring diagram with semantic information,
helping us better understand brain functions. However, there is currently
no approach that simultaneously learns both the physical connectivity
and the conceptual semantic connectivity patterns within the connec-
tome. In this paper, we propose using knowledge graphs to integrate
physical connectivity and semantic connectivity. We construct knowl-
edge graphs from the connectomes of Drosophila and a partial human
cortex. Then, we further propose a brain wiring knowledge graph reason-
ing framework based on Lie Group Embedding for logical neuronal rela-
tion inference. By integrating multi-dimensional neuronal data, includ-
ing synaptic connectivity, spatial localization, functional activity, cellular
properties, and morphological characteristics, we construct a heteroge-
neous brain wiring knowledge graph to capture the intricate relationships
between neurons. Link prediction and neuron classification tasks reveal
the connection patterns of neurons in brain functions and the distribution
patterns of functional regions. Experimental results demonstrate that the
proposed method excels in logical reasoning tasks. The learned embed-
dings of neurons can reveal the taxonomy of complex neuronal functions.
Our code is available at https://github.com/zzy2018730/reasoning.

Keywords: Brain Neural Networks · Neuronal Relation Inference · Neu-
ronal link prediction.

1 Introduction

Understanding the brain’s neural circuits is fundamental to neuroscience re-
search, as it provides insights into the brain’s complex functions and mechanisms

https://github.com/zzy2018730/reasoning
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[1,2,3,4]. This knowledge is crucial for advancing our understanding of cognitive
processes, brain disorders, and potential therapeutic strategies. The intricate
networks formed by neurons enable various brain functions, and studying these
connections is essential for decoding the brain’s structure and activities.

Traditional brain connectivity studies have largely relied on imaging tech-
nologies such as fMRI and DTI [5], as well as electrophysiological techniques like
EEG and MEG [6], to map physical connections between neurons [7,8,9,10,11,12].
While these methods are effective at revealing physical contacts and signal prop-
agation paths, they are limited in capturing the abstract, semantic relationships
between neurons [13,14,15,16].

Knowledge graphs are powerful tools that can integrate multiple types of
data and capture both structured and semantic information. Through knowl-
edge graphs, the physical connections between neurons (such as synaptic links)
can not only be modeled, but the abstract semantic relationships underlying
neural logic and function can also be learned [17,18,19,20]. This enables a more
comprehensive understanding of the brain’s connectivity structure. Therefore,
by combining knowledge graph based reasoning methods, we can explore the
functional characteristics and organizational structures of neurons at different
levels and categories.

This study first constructed three brain connectivity knowledge graphs from
the publicly available connectomes [21,23] that contain synaptic connectivity,
spatial localization, functional activity, cellular properties, and morphological
features. We then propose a novel knowledge graph reasoning framework based
on Lie group embedding for logical neuronal relation inference, as shown in Fig.1.
Through link prediction and neuron classification tasks, we reveal the connection
patterns between neurons in brain functions and the distribution of functional
regions. Experimental results demonstrate that our approach excels in both neu-
ronal logical reasoning and functional classification tasks, significantly enhancing
the understanding of brain wiring complexity. This study not only provides an
innovative theoretical framework for interpreting brain wiring functions but also
highlights the immense potential of Lie group embedding and knowledge graph
reasoning in decoding the brain’s structure and function.

Our contributions:

• We construct heterogeneous knowledge graphs integrating multi-dimensional
neuronal data.

• We propose a Lie group embedding-based brain wiring knowledge graph
reasoning framework to model physical and semantic connectivity.

• Our framework can learn the hierarchical categories and functional charac-
teristics of neurons, further enhancing the understanding of brain connectiv-
ity.
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Fig. 1. The left frame illustrates the data source, representing the brain wiring knowl-
edge graph constructed using the NeuPrint dataset. The graph includes various entities
and edge types. The right frame presents our model architecture, where complex query
types are constructed, and a Lie group-based reasoning method, including projection,
conjunction, and disjunction operations, is applied. The reasoning results are derived
by calculating the distance between the entity and the query.

2 Method

2.1 Constructing Brain Wiring Knowledge Graph

Brain Wiring Knowledge Graph. A knowledge graph is G = (E,R, T ),
where E is the entity set, R is the relation set. T ⊂ E × R × E is a set of true
facts, where each fact is represented as a triplet (h, r, t) corresponding to the
assertion r(h, t), where r is a 2-ary predicate, where h/t is the head/tail entity.

HemiBrain dataset [21] used in this study followed several key steps from the
original Drosophila brain to model input. This involved microdissection, FIB-
SEM imaging, FFNs-based segmentation and neuron reconstruction, synapse
prediction, manual correction of segmentation errors, and cell-type identification
using genetic and optical methods. The processed data were released on the
neuPrint platform [22]. A similar process was applied by Shapson-Coe [23] for
H01 sample to extract detailed neuron connection data from a partial human
cortex.

This process yielded detailed neuron connection information, including presy-
naptic and postsynaptic connections, neuron region of interest (ROI), type, in-
stance, and cell body fiber. Based on this, we constructed three heterogeneous
knowledge graphs to explore brain wiring structure and function. The key enti-
ties in the graph include Neuron ID, ROI, Type, Instance, and Cell Body Fiber,
with relationships such as CellBodyFiber, InputROI, isInstanceOf, isTypeOf,
PreSynapticConnect, and PostSynapticConnect, which represent neuron con-
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nectivity and interactions across brain regions. The dynamic illustration of the
constructed knowledge graph can be found in the Supplementary Material.
Logical Neuronal Relation. Using this knowledge graph, we conducted log-
ical inference on several motifs: 1p, 2p, 2i, ip, and 2in. Each motif corresponds
to a specific query about neuronal connections, allowing for the extraction of
relational information that deepens our understanding of brain structure and
function. These motifs include:

• 1p: ∃v? : r(vh, v?). Queries the postsynaptic connections of neuron a.
• 2p: ∃v? : r1(vh, v′) → r2(v

′, v?). Queries the postsynaptic connections of the
postsynaptic connections of neuron a.

• 2i: ∃v? : r1(vh1
, v?) ∧ r2(vh2

, v?). Queries neurons that share postsynaptic
connections with both neuron a and neuron b.

• ip: ∃v? : r1(vh1
, vi) ∧ r2(vh2

, vi) → r3(vi
′, v?). Queries the types of neurons

that share postsynaptic connections with both neuron a and neuron b.
• 2in: ∃v? : r1(vh1

, v?)∧¬r2(vh2
, v?). Queries neurons that are postsynaptically

connected to neuron a, but not to neuron b.

These logical motifs enable us to query and infer various relationships within
the brain wiring knowledge graph, providing insights into the brain’s complex
neuronal network.

2.2 Modeling Logical Operators Using Region Embeddings

Lie Group. Since Neuronal Relation Inference relies on the logical relationships
between neurons. Since logical reasoning requires closure under operations, it is
important to choose an appropriate embedding space. Lie groups as compact
manifolds constrain logical operators within the manifold, whereas Euclidean
space is an open manifold and may lead to embedding divergence.

Region Embedding. Atomic queries, which retrieve basic facts or relationships
between entities, serve as the fundamental units in knowledge graph reasoning.
Each entity in a knowledge graph is represented as a point X = ⟨x⟩ ∈ Tn,
located on an n-dimensional torus. First-order logic queries [24] typically cover
a closed region within Tn [25]. This region is defined by a center point and a
neighborhood, i.e., q = (Xc, ∆), where Xc ∈ Tn represents the center of the
query region, and ∆ denotes the extent of the region.

Projection Operator. The projection operation uses the relation embedding
⟨r⟩ to map the query region to a new region, as depicted in Fig 1(I). Let ◦
represent the group operation. Projection operation is defined as ◦⟨r⟩:

q′ = ⟨q⟩ ◦ ⟨r⟩ ⇐⇒ X′ = ⟨X⟩ ◦ ⟨r⟩, ∆′ = ⟨∆⟩ ◦ ⟨r⟩, (1)

where r denotes the relation embedding.
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Conjunction Operator. The conjunction operation models the conjunction of
the set q1∧q2∧· · ·∧qn, where q1, q2, · · · , qn are the input queries, as shown in Fig-
ure 1(II). Due to the permutation invariance of the self-attention mechanism [26],
it is applied to the input X. Initially, each Xi passes through an MLP to obtain
Q, K, and V. The new X after the conjunction is: X∧ = softmax

(
QKT

√
d

)
V.

Subsequently, we apply min-pooling operation to ∆. The center and size after
the conjunction operation are determined by X∧ and ∆∧:

X∧ = softmax
(
QKT

√
d

)
V, ∆∧ = MinPooling

(
n⊕

i=1

MLP(∆i)

)
, (2)

where ⊕ denotes the concatenation operation, Q = ⊕n
i=1MLPQ(Xi), K =

⊕n
i=1MLPK(Xi), V = ⊕n

i=1(Xi).

Negation Operator. Given a query q, the negation operation computes its
inverse, as shown in Equation 3, yielding the negated result:

¬q = ⟨q⟩−1. (3)

N-dimensional torus distance function. We use the p-norm of the minimum
distance between corresponding points on each circle to calculate the distance:

d(x, y) = ||[g(x1, y1), . . . , g(xn, yn)]||p, (4)

where g(a, b) computes the shortest arc length between two points on the unit
circle:

g(a, b) = min(|⟨a⟩ −∗ ⟨b⟩|, 1− |⟨a⟩ −∗ ⟨b⟩|), (5)

where −∗ denotes group subtraction.
Entity-to-region distance. If there is a query ⟨q⟩ ∈ Tn and an entity vector
⟨v⟩ ∈ Tn, the distance is defined as

d(q, v) = dout(q, v) + α · din(q, v), (6)

where ⟨q⟩max = X + ∆ and ⟨q⟩min = X − ∆, with 0 < α < 1. The external
distance dout(q, v) is computed as:

dout(q, v) = ||g(max(v − qmax, 0)) + g(max(qmin − v, 0))||2, (7)

and the internal distance din(q, v) is computed as:

din(q, v) = ||g(X(q))− g(min(qmax,min(qmax,max(qmin, v))))||2. (8)

The external distance refers to the distance from the entity to the nearest bound-
ary, while the internal distance measures the distance from the side to the center
of the query region.
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Table 1. Statistical Information of Different Datasets

Dataset Entities Relations class Train Triplets Valid Triplets Test Triplets
HemiBrain-KG 35,128 7 6,081,008 760,126 760,126
MANC-KG 32,059 6 608,009 76,001 76,001
H01-KG 15,562 3 57,624 7,203 7,203

Table 2. Performance of the proposed Logical Reasoning method on HemiBrain-KG,
Manc-KG, and H01-KG datasets, evaluated using MRR and Hits@3/50 metrics.

Dataset 1p 2p 2i ip 2in
MRR Hits@50 MRR Hits@50 MRR Hits@3 MRR Hits@3 MRR Hits@3

HemiBrain-KG 10.2 47.52 15.61 39.72 52.33 71.52 57.36 72.06 46.37 66.38
Manc-KG 35.67 89.25 45.32 50.06 87.63 99.05 91.66 99.89 76.53 89.33
H01-KG 32.01 86.53 41.67 77.69 84.79 98.82 89.54 99.51 72.32 80.63

Training objective. Using the query training set, the loss function is optimized
through positive and negative sampling as follows:

L =
∑

(q,v)∈∆

∑
(q,v′)∈∆′

[γ + f(q, v)− f(q, v′)], (9)

where γ is a fixed scalar margin, (q, v) denotes a positive query-answer pair, and
(q, v′) represents a negative pair sampled from disturbed triples.

3 Experiments

Dataset. We use HemiBrain-KG [21], MANC-KG [28], and H01-KG[23] to val-
idate our proposed method. HemiBrain is a high-density reconstruction of the
central brain of Drosophila, MANC is derived from the ventral nerve cord of a
male Drosophila, and H01 comes from a partial human cortex. We processed the
raw data, transforming the neuron and connection information into a knowledge
graph, In H01-KG, 1p contains 60,953 triples, 2p contains 52,495 triples, 2i con-
tains 42,130 triples, ip contains 4,042 triples, and 2in contains 2,061 triples. The
dataset is split to train, valid, and test in an 8:1:1 ratio, as shown in Table 1.
Logical Reasoning Performance. We constructed five logical reasoning mo-
tifs (1p, 2p, 2i, ip, 2in) for HemiBrain-KG, Manc-KG, and H01-KG. Using MRR
to measure ranking and Hits@3/50 to evaluate top predictions, our method per-
formed well across all datasets. Since neurons have more postsynaptic connec-
tions, Hits@3 might not fully reflect reasoning performance for 1p and 2p, so we
used Hits@50 instead. Our approach achieved high MRR and Hits@3/50 scores,
particularly on the Manc-KG dataset, validating the quality of our datasets. We
also compared our method with representative real-valued embedding methods
on the H01 dataset. The Euclidean space-based method scored lower (31.67,
37.06, 80.12, 88.87 on 1p, 2p, 2i, and ip) compared to our Lie group-based ap-
proach, demonstrating the superior performance of our method.
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Fig. 2. The hierarchical clustering of neurons on HemiBrain successfully grouped neu-
rons of the same type together. Our symbolic neural model can automatically learn
the taxonomy of neuronal types.

Hierarchical Clustering Analysis. We input the learned entity embeddings
into a density clustering algorithm, allowing our symbolic neural model to au-
tomatically learn the taxonomy of neuronal types. The hierarchical clustering
results show that our model effectively captures neuronal features, revealing a
hierarchical distribution that aligns with known brain regions such as the mush-
room body, lateral horn, and antennal lobe, which are associated with mem-
ory formation, olfactory processing, and sensory integration, respectively. By
combining neuronal morphological features and connectivity information, our
method successfully assigns neurons to different functional regions, uncovering
patterns related to visual processing, learning, memory, sensory, and motor con-
trol.
Entity Embedding Visualization. Fig.3 shows the t-SNE visualization of
instance embeddings from three datasets. The plot clearly demonstrates the dis-
tinct clustering of neurons from different instances, where each color represents
a different instance category. The results indicate that the embedding method
successfully separates the instances, effectively capturing the differences between
them.
Case Analysis. HemiBrain was used to predict the postsynaptic connections(task
1p) of specific neurons based on logical relation inference methods, as shown in
Fig.4. The prediction results demonstrate that most neuron link predictions are
accurate, with the model exhibiting high sensitivity and specificity in capturing
the complex logical relationships between neurons. The prediction for neuron
ID 5813080979 was accurate, indicating the model’s ability to handle complex
link patterns. For neuron ID 602852509, the model successfully predicted the
presence of its postsynaptic connections, confirming the model’s high precision
and strong ability to capture neuron link characteristics.
Logical Relationship Modeling. Fig.5 focused on analyzing the embedding
distribution of PostSynapticConnect, its inverse relationship PreSynapticConnect,
and their product PostSynapticConnect ◦ PreSynapticConnect in the knowl-
edge graph. The results show that the distributions of PostSynapticConnect and
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Fig. 3. t-SNE visualization of entity embeddings for instances in three datasets. The
plot clearly demonstrates the distinct clustering of neurons from different instances,
where each color represents a different instance category.

id: 5813080979

id: 602852509

PostSynapicConnect

PostSynapicConnect

Fig. 4. Schematic diagram of reasoning task 1p, where the candidate set consists of
all neurons. A check mark indicates correct reasoning, while a cross mark indicates
incorrect reasoning.

PreSynapticConnect are relatively concentrated in the neural network, indicat-
ing that these two relationships occur frequently. The product of the inverse
relationships tends to approach zero, which validates the effectiveness of our
method for learning logical relationships. Additionally, the higher frequency of
synaptic connection relationships within certain ranges suggests that there may
be strong functional connections between some neurons.

4 Conclusion

We propose a brain wiring knowledge graph reasoning framework based on Lie
group embedding to simultaneously learn both physical and semantic neuron
connectivity patterns. By integrating multi-dimensional neuronal data, includ-
ing synaptic connectivity, spatial localization, and functional activity, the frame-
work captures the intricate relationships between neurons. Experimental results
on datasets from Drosophila and a partial human cortex neurons show that
this approach excels in neuronal logical reasoning and functional classification,
providing new insights into the complexity of brain wiring and highlighting the
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(a) PreSynapicConnect (b) PostSynapicConnect (c) Post ◦ Pre

Fig. 5. Embedding frequency distribution of different relationship types in Drosophila
HemiBrain-KG, the product of inverse relationship tends to approach zero, validating
the effectiveness of our method in learning logical relationships.

potential of Lie group embedding and knowledge graph reasoning in advancing
neuroscience research.
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