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Abstract. The acquisition of structural brain network data is inher-
ently challenging due to high costs of Diffusion Tensor Imaging (DTI)
and the complexity of data processing such as tractography. Moreover,
medical datasets often exhibit severe class imbalance where the sample
size of healthy subjects highly exceeds that of diseased. While recent
graph generation models offer a potential solution, its application to
brain networks is understudied as they often underestimate preserving
topological feature which is an essential biomarker. To address these
limitations, we propose a conditional graph diffusion model that ensures
high-fidelity graph generation by leveraging persistent homology. Specifi-
cally, we introduce a Conditional Graph Diffusion (ConGD) method that
utilizes Condition Infused Attention (CIA) module with class and struc-
ture conditioning, to enable the targeted synthesis of brain networks,
and Topology Aligning (TA) regularization to enforce topological consis-
tency. Experiments on the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset demonstrate that our approach provides high-fidelity
synthetic brain networks under label conditions, which are further vali-
dated for improving predictive performance through downstream graph
classification tasks.

Keywords: Conditional Graph Diffusion - Persistent Homology - Brain
Network.

1 Introduction

Brain network analysis via the lens of graph representation has been a main-
stream approach for understanding interactions betweeen different brain region
of interest (ROI) and their relationship to neurological disorders and cognitive
function [4, ?]. However, curating the brain network dataset in the initial stage
faces significant challenges, as constructing brain networks typically requires ex-
pensive neuroimaging scans as well as preprocessing pipelines, e.g., tractography
on Diffusion Tensor Imaging (DTI) [24]. Moreover, neuroimaging datasets often
exhibit severe class imbalance, where healthy subjects far outnumber the dis-
eased. While graph generative method is a potential solution, its application to
brain networks remains limited due to their complex structure.
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Recent Graph generation methods aim to synthesize graphs that resemble
the distribution of real graphs. Existing methods, such as graph recurrent neural
networks [29], variational autoencoders [22], and diffusion-based models [13, 26],
have demonstrated promising results in generating graphs with high resemblance.
However, these approaches primarily focus on preserving statistical properties,
such as degree distributions and clustering coefficients, often neglecting preserv-
ing global topological structures. Such approaches are particularly problematic
for brain networks, where topological features serve as critical biomarkers for
neurological conditions [20,23]. For example, deploying graph diffusion model
directly for brain network generation will synthesize edges inter-connecting left
and right hemispheres, which highly deviates from the true data. Therefore,
generating synthetic brain networks under topological and disease conditions is
crucial for augmenting limited data to aid downstream analysis.

To address these challenges, we propose a novel Conditional Graph Diffu-
sion (ConGD) method. Unlike conventional graph generative models, ConGD
generates graphs under several conditions. There are two key components: 1)
Condition Infused Attention (CIA) module that leverages robust embeddings
of conditions as a bias term in a transformer architecture to enhance the de-
noising network’s ability to provide representations consistent on the conditions,
and 2) Topology Alignment (TA) based on persistent homology, which enforces
consistency between the homological features of real and generated graphs via
a 1-Wasserstein distance. Also, ConGD employs a class-conditioned diffusion to
enable class-targeted augmentation, to address the class imbalance problem.
Contributions. Our main contributions are as follows: 1) we propose a novel
graph diffusion model that preserves topological fidelity, 2) we design a CIA mod-
ule, which improves structural consistency in generating disease-specific brain
networks and alleviates class imbalance problem, 3) we introduce the topol-
ogy alignment that enforces homological consistency into the generation pro-
cess. Through comprehensive experiments on downstream graph classification,
we validate the brain networks generated by ConGD on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset, demonstrating superior performance.

2 Related Work

2.1 Discrete Diffusion Models for Graph Generation.

Recently, diffusion-based models [2,13,26] have emerged as a promising graph
generation approach. In particular, discrete diffusion methods proposed in [1] and
[26] have demonstrated strong performance in capturing the joint distribution of
nodes and edges. Diffusion models consist of two components: the forward and
reverse process, each conducted by a noise model and a denoising network.

Forward process. Let G = (V| E) be a graph, where V is the set of N nodes,
and E C V x V is the set of edges. Treating the node and edge attributes
as categorical distributions with cardinalities dy and dg, the node and edge
attribute matrices are given as X € RV*4v and A € RVXN*de regpectively. In
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the discrete diffusion setting, a noise model in the forward process progressively
corrupts a clean initial graph G = (X°, A%) = G to a noisy graph G* = (X, A?),
for time step ¢t = 1,2,...,T. Specifically, the noise is represented as transition
matrices Q% € R¥V*4 and QY € R¥*4e guch as a uniform distribution,
which shifts the distribution of X*~! and A*~! to that of X* and A?, imposing
noise at each time step [1]. By multiplying the transition matrix to X° and A°
for ¢ times, we can obtain a noisy graph G°¢.

Reverse process. The denoising network ¢ inverts the forward process by
estimating the categorical probability vector peo from G*. During inference, a
graph is synthesized by iteratively estimating pco from G* with ¢ and imposing
noise back to the estimate pgo to obtain G*~1, progressing from ¢ = T to 1.

2.2 Persistent Homology on Graphs

Persistent homology (PH) is a method used to encode global structural properties
of data [5,9]. It captures topological features, e.g., connected components or
loops, by tracking their birth and death across a filtration, i.e., a nested sequence
of subgraphs. By encoding the entire filtration, PH provides a rich representation
of global structure that may not be readily apparent in the original graph.
Persistent diagram is a primary representation method of PH. Given a fil-
tration, suppose a topological feature is born at i-th subgraph and died at j-th
subgraph, i.e., that it persists from i to j. This feature can be represented as a
persistence barcode, a tuple (i, j) of birth and death pair. Plotting these barcodes
as points on R? plane, one can obtain a persistence diagram D¢ of a graph G:

Dg = {(b,d) | persistence barcode of G} C R?. (1)

Persistence landscape [3] is a vectorization method that transforms the topo-
logical features in a persistence diagram D¢ into a fixed-size vector representa-
tion pg, by encoding them as a sequence of piecewise linear functions. These
representations, the persistence diagram D¢ and the topological feature vector
ta, encode complete persistent homology information of a given graph [3,9].

Persistent homology has been increasingly utilized to inject topological in-
formation into learning across various domains, including medical images [7, 19],
point clouds [17], 3D shapes [10], and graph representation learning [12, 28]. Ad-
ditionally, topology generative models have also been proposed in domains such
as images and molecular structures [27,30]. However, these approaches remain
inapplicable to discrete graphs with sparse and irregular connectivity, limitations
that are particularly critical in brain networks where global topology serves as a
crucial biomarker for disease characterization [20, 23]. Besides PH, several studies
have utilized topology of brain networks, derived from topological data analysis,
to classification tasks, achieving meaningful performance gains [11,18].

3 Graph Diffusion with Conditions

In this section, we propose ConGD, a Conditional Graph Diffusion framework
for class-conditioned graph generation with high structural fidelity. Following
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Fig. 1: The overall framework of ConGD: (a) the training process and (b) the denoising
network ¢ with K transformer layers with M multi-headed CIA modules.

[1,26], the diffusion process of ConGD is defined on a discrete space, with the
forward and reverse process acting on the node and edge attributes. Specifi-
cally, we extend the graph transformer network (8] as the denoising network ¢y,
parametrized by 6, to estimate the probability vector p of the nodes and edges of
GY, i.e., pgo = (Pxo, Pao). An overview of our framework is illustrated in Fig. 1.

3.1 Class-conditioned Graph Generation

Condition Infused Attention Module. An important extension of the graph
transformer in ConGD is the Condition Infused Attention (CIA) module, which
enhances class-aware representation learning by integrating class-conditioned
topological embeddings. In addition to the noisy graph G?, which is primarily
utilized in graph transformer models [8,21], CIA utilizes the topological fea-
ture vector pugo obtained via persistence landscape (Sec. 2.2) and the class label
one-hot vector HCGISSS.

In the denoising network ¢4(G°|G?, ug,, ]lCGlSss), CIA is repeated for K trans-
former layers, where each layer consists of M multi-headed CIA modules. At
each k-th layer, CIA operates on the node and edge attribute, X} and Af,
which are initialized from the noisy graph (X, A'). Similar to standard graph
transformers, the query Qf, key K&, and value V) matrices are obtained by
applying distinct linear transformations to X/, while the edge embedding A}
is derived from A%. Additionally, we define a class-conditioned topological em-
bedding, Tgo = W [,uGo H]lgg“], where W is a learnable weight matrix and
|| denotes concatenation. Using these representations, the attention score wz’m
and its intermediate score oz’,?m in the m-th head of CIA is computed as:

exp ([Oéi,m Al + TGOW]LJ’)

, (2
>, exp <[a§€‘m AL+ TGo,m] _ )

¥

t t T
t k,m ° ’Ck,m

Ap.m = \/a ) [wltc,m]iaj =

where d denotes the dimension of Qj ,, and []; ; indicates the (i,)-th element
of the matrix.
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Using the wy, ,,, intermediate node and edge embeddings, X} and AL, are
derived by aggregating the outputs of the M multi-headed CIA as:

Xltc = [wltc,lvli,ln T ||wtk,MVIZ,M]7 AZ = [wltg1|| T ||wtkM] (3)

The transformer layer then updates the node and edge attributes by projecting
the aggregated embeddings to their original dimensions via an MLP:

Xfay = WxaReLU (WxiX), Al = WapReLU (Wandy ), (4)

where W.; and W. 5 are the learnable weight matrices for a 2-layer MLP. The
final node and edge attributes, obtained through K iterative transformer layers,
are used to estimate the categorical probability vector pgo of graph G° under
topological and class-wise conditions.

Note that CIA utilizes class-conditioned topological embedding 7go as a
global attention bias term to guide the attention to capture both class informa-
tion and topological features within the graph. Unlike conventional graph trans-
formers, which integrate edge embeddings into node-wise attention [8], capturing
local structures, CIA leverages Tgo to encode global structural properties from
the topological feature vector pgo to the attention computation. By leveraging
Tgo, CIA enhances the estimation of topology-aware node and edge embeddings,
refining the estimation of the topology-aware probability vector pgo.

Class-conditioned Topological Embedding for Sampling. Class condi-
tioning in 7o plays a more prominent role in sampling. During training, CIA
utilizes pgo computed from the original graph via persistence landscape, along
with ]lCGZ%SS. However, in the reverse diffusion process, the original graph is un-
available, preventing direct computation of pugo. To address this issue, we replace
o with the class-wise averaged persistence landscape fi®“*** precomputed from
the training dataset, and change the class label vector ]1%855 with the desired
class label vectors 1¢%°5. Denoting the transition matrix of node and edge at-
tributes as Q% and QY (from Sec. 2.1), the sampling process is done as:

(ﬁXO7ﬁAO) = ¢9(XO7 AO | Xtv Ata p/ClaSS7 ]ldass)a (5)
t—1 t—1

X =pyo [[@% A7 =pao [ Q- (6)
s=1 s=1

By repeating Eq. (5) and (6) for ¢ = T,T — 1,...,,1, we can generate a graph
conditioned on a desired class through sampling from the final categorical dis-
tribution pxo and p4o. The substitution of conditional embedding Tgo allows
the topology-aware attention mechanism to retain class-specific structural in-
formation during sampling, ensuring that the generated graphs align with the
distribution of the target class in the training dataset. The effectiveness of class-
conditioned topological embeddings in improving graph generation is further
demonstrated in Sec. 4.
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3.2 Objective Function

The final objective of ConGD is to produce accurate estimation of the probability
vector Pgo, which aligns the joint distribution of nodes and edges while preserving
conditional properties, i.e., disease label and topological structure. We first aim
to ensure that the probability vectors produced by ¢y conditioned on the label
as well as the structure closely approximate the ground truth attributes of the
clean graph G°. This is achieved by minimizing the cross entropy loss over all
nodes and edges:

Leg (G pgo) = Lep (X%, pxo) + A1 Lcg (A°,pao)

N Y& (7)
==Y wilog(he,) =AY Y ai;log (Ba,,)
=1

i=1 j=1

where A1 € (0,1], z; and a; ; are the i-th node and its edge connected to node j.

To further ensure that the generated graphs accurately reflect the topolog-
ical characteristics of the original graphs, we aim to minimize the discrepancy
between the conditionally generated and the real graphs via persistence dia-
grams. For a given original graph G° and the estimated pgo, their persistence
diagrams Dgo and Dj_, are derived as in Eq. (1). Considering the diagrams as
distributions [16], we measure the discrepancy between the two distributions via
1-Wasserstein distance as:

Rra(Dao, Do) = > ([Zbirh = 7" (2)birin]” + [Zdcath — 7" (Z)acan]?) , (8)
zE€D 0

where 7" is the optimal bijection between Dgo and Dy, . As one-to-one bijection
is infeasible, since the number of elements in the Dgo and D; , are different, we
padded the diagrams with dummy elements, i.e., points with identical birth and
death pair that carry minimal topological information, to ensure the bijection
to exist [14].

Finally, the training objective of ConGD is formulated as a combination of
(7) and (8) as:

6* = argomin Lcg (G07ﬁgo) + Ao Rra (Dgo, Dﬁco ), (9)

where Az € (0, 1] controls the effect of regularization.

4 Experiments

4.1 Experimental details

Dataset. We validate our method using structural brain connectivity data de-
rived from Diffusion Weighted Imaging (DWI) in the Alzheimer’s Disease Neu-
roimaging Initiative (ADNTI), processed with an in-house tractography pipeline.
Using the Destrieux atlas [6], each brain network is represented as an undirected
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Table 1: Quantitative comparison on downstream graph classification task. The
best scores are highlighted in Bold.
Conventional Methods Graph Methods
Method SVM MLP GON [15] GAT [25]
Acc. Prec. Rec. fl. Acc. Prec. Rec. fl. Acc. Prec. Rec. fl. Acc. Prec. Rec. fl.
Binary Classification (CN/AD)

No Aug. 66.9 61.1 624 624 723 70.1 644 63.3 726 581 56.5 53.8 69.1 58.3 60.4 58.0
Edge Pert. 682 68.5 682 68.0 725 74.7 725 715 70.5 70.6 70.5 67.8 66.5 681 66.5 62.7
GDSS [13]  67.8 685 67.8 67.4 68.8 713 688 679 69.2 713 69.2 672 70.6 71.7 70.6 70.2
DiGress [26] 66.9 67.1 66.9 66.7 70.4 709 704 70.2 709 714 70.9 70.7 68.4 63.6 684 64.8

ConGD 71.3 71.6 71.3 71.2 77.3 78.7 77.3 77.0 78.0 78.4 78.0 77.8 71.3 72.6 71.3 70.8
5-way Classification (CN/SMC/EMCI/LMCI/AD)

No Aug. 44.2 408 364 36.3 41.6 27.7 27.6 25.6 40.9 284 29.6 27.5 39.6 288 29.6 28.0
Edge Pert. 39.2 42.0 39.2 342 31.1 34.1 31.1 242 33.6 229 336 245 351 29.6 351 29.5
GDSS [13] 413 36.5 41.3 334 40.6 404 40.6 349 40.2 42.8 40.2 37.1 352 36.8 352 329
DiGress [26] 38.7 37.4 387 37.5 325 309 325 30.0 322 312 322 309 318 319 31.8 31.0

ConGD 43.3 43.4 43.3 41.8 40.7 43.6 40.7 39.7 40.8 42.6 40.8 39.6 38.2 39.3 38.2 37.7

binary graph with 160 regions of interest (ROIs), comprising 148 cortical and
12 subcortical regions. The dataset consists of 500 subjects with five diagnostic
labels, exhibiting severe class imbalance: Control (CN, n=250), Significant Mem-
ory Concern (SMC, n=50), Early Mild Cognitive Impairment (EMCI, n=100),
Late Mild Cognitive Impairment (LMCI, n=50), and AD (n=50).

Baseline methods. We compared our method with various data augmentation
methods, ranging from heuristic edge perturbation to graph generation models
(GDSS [13] and DiGress [26]). To assess the general performance improvement
from augmentation, we evaluated multiple classification methods, including con-
ventional models such as support vector machines (SVM) and MLP, as well as
graph-based models such as GCN [15] and GAT [25]. All results were obtained by
averaging results from 10-fold cross-validation. For a fair comparison, the same
number of graphs were generated by each augmentation method to balance the
class distribution, resulting in 300 samples per class and a total of 1,500 samples.

4.2 Experimental results

Data augmentation using ConGD. We empirically evaluate the effectiveness
of the generated data across augmentation methods in Tab. 1. In binary classifi-
cation, ConGD consistently outperformed all baseline augmentations across ev-
ery classification methods, achieving average improvement of 4.25%p, 13.43%p,
13.55%p, and 15.18%p in accuracy, precision, recall, and Fl-score over no aug-
mentation. For 5-way classification, we observed that standard classification
models struggle with class imbalance, exhibiting relatively high accuracy but
poor precision and recall, indicating a bias toward dominant labels. Augmenta-
tion mitigates this issue with a slight accuracy trade-offs, with ConGD providing
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Fig. 2: t-SNE visualization of the topological embeddings of original and generated
brain networks. (a) CN and (b) AD. The samples from ConGD (green) shows the largest
overlap with the original data (orange), whereas other methods show distribution shift
(red, blue, and purple).

the most substantial averaged gains: 10.8%p in precision, 9.95%p in recall, and
10.35%p in Fl-score. These results demonstrate the effectiveness of ConGD in
improving class separability via class-conditioned augmentation.

Class-conditioning and Topology-awareness. The quantitative compari-
son, however, does not explicitly show the improvement of the generated graphs
from a topological perspective. Hence, we provide a t-SNE visualization of the
topological embeddings of original and generated graphs, obtained using persis-
tent landscape, for different classes (Fig. 2). In both CN and AD, the generated
graphs using the edge perturbation method and GDSS [13] formed a distinct
cluster, exhibiting poor alignment with the reference graph topology. Compared
to DiGress [26], a discrete graph diffusion method, ConGD showed a clear shift
of generated graphs toward the reference graphs in the topological space. This
highlights the effectiveness of the topology-constraint learning via CIA module
and TA regularization.

5 Conclusion

In this work, we introduced ConGD, a topology-constrained conditional graph
diffusion framework for Alzheimer stage-specific brain network generation. By
integrating conditional factors, i.e., disease label and topological structure, into
the generation process, together with additional topological consistency regu-
larization, our method successfully synthesizes brain networks that are highly
associated with the conditions as well as resemble the real brain networks in
the data distribution. Experimental results on the ADNI dataset demonstrate



Conditional Graph Diffusion for Brain Network Generation 9

that ConGD effectively mitigates class imbalance through targeted augmenta-
tion, leading to improved downstream classification performance. Our findings
highlight the importance of topology-aware learning in brain network synthe-
sis, providing a promising direction for enhancing neuroimaging analyses and
expanding the utility of generative models in medical applications.
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