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Abstract. Accurate detection of aortic dissection (AD) in emergency
settings is of significant importance, as misdiagnosis can significantly de-
lay subsequent treatments and even endanger patients’ lives. Currently,
non-contrast CT scans are standard protocols in emergency departments
for patients with chest pain, yet their ability to detect AD remains lim-
ited. We introduce a novel multimodal contrastive learning framework
designed to learn discriminative features from both contrast-enhanced
CT and corresponding diagnostic reports. These features are then aligned
with non-contrast CT scans through a multimodal contrastive learning
approach. Specifically, we first segment and straighten the aorta to effec-
tively apply attention to the aortic area. Finally, the pre-trained encoder
is fine-tuned for the tasks of AD detection and lumen segmentation us-
ing non-contrast CT scans. Our experiments, conducted on a test dataset
comprising 239 subjects (127 with AD and 112 without), demonstrated
that the proposed framework achieves an accuracy of 0.958, an F1-score
of 0.969, and an AUC of 0.983 in AD detection. These results surpass
those of six state-of-the-art classification models. In lumen segmentation
experiments, the framework achieves an average DSC of 0.705, outper-
forming others. These findings indicate that our proposed framework not
only outperforms existing AD detection methods but also holds the po-
tential to accurately localize false lumen using non-contrast CT scans
alone.

Keywords: Aortic Dissection · Classification · Segmentation · Multi-
modal Contrastive Learning.
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1 Introduction

Aortic dissection (AD) is a critical and life-threatening vascular disease char-
acterized by a tear in the inner layer of the aorta, leading to the formation of
a false lumen within the aortic wall [21]. This condition can precipitate aortic
rupture, resulting in fatal hemorrhaging. If patients were not treated in time, the
48-hour mortality rate could reach 30% [13]. It is concerning that approximately
one-third of patients are misdiagnosed or experience diagnostic delays [17]. Es-
pecially in the emergency department, missing a diagnosis can be devastating
for the patient and pose challenges to the health service provision [10].

Currently, contrast-enhanced computed tomography (CE-CT) is the gold
standard for diagnosing AD. It provides radiologists with crucial information
for making conclusive decisions [13,16]. However, CE-CT is expensive and time-
consuming. Moreover, its use of contrast agents may cause severe allergic events
and kidney failure [5,28]. In contrast, non-contrast CT (NC-CT) is widely avail-
able in most emergency rooms and can be performed rapidly [20]. However, NC-
CT has limitations in diagnostic accuracy, especially in cases with nonspecific
symptoms, which often lead to misdiagnoses in the clinic. Therefore, improving
the sensitivity and accuracy of AD diagnosis on NC-CT in an emergency setting
is clinically demanding.

Deep learning methods have shown outstanding performance in medical im-
age analysis [6,19]. Several publications have been investigated to detect AD on
NC-CT in recent years [2, 4, 8, 18]. Xiong et al. [27] proposed a cascaded multi-
task generation framework to simultaneously synthesize CE-CT, segment the
lumens, and detect AD. However, due to the limitations of multi-task training,
there is still potential to improve both accuracy and segmentation performance.

Cheng et al. [3] proposed a 3D full-resolution U-Net algorithm to segment
the true and false lumens for AD detection on NC-CT with an accuracy of 0.938.
But, it utilized CT with a slice thickness of 0.625 mm, resulting in a relatively
high cost for clinical applications.

Despite the simplicity and direct mapping characteristics of end-to-end meth-
ods, some state-of-the-art works have proven that large image-text models have
become a very promising alternative in the field of medical image analysis. Mul-
timodal contrastive learning extends the capabilities of contrastive learning by
integrating information from multiple modalities, such as images and text [22].
Zhang et al. [29] presented a ConVIRT framework for learning visual representa-
tions by exploiting the naturally occurring pairing of images and textual data. In
medical imaging, this approach leverages the synergy between radiological im-
ages and associated textual reports, enabling models to learn rich, cross-modal
representations.

Inspired by these works, we propose a novel 3D multimodal contrastive learn-
ing framework for AD detection and lumen segmentation using NC-CT. The
framework primarily consists of several innovative components, including data
preprocessing, multimodal contrastive learning and sub-task training. To bet-
ter identify and quantify the global volumetric features of the aorta and the
local characteristics of the primary tear, aortic straightening is performed be-
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Fig. 1. An overview of our proposed multimodal contrastive learning framework. First,
the aorta region is segmented and straightened. Subsequently, a multimodal contrastive
learning model is trained to align the features of non-contrast CT scans with those
derived from contrast-enhanced CT images and textual reports. Finally, the encoder is
fine-tuned for the sub-tasks using non-contrast CT scans.

fore training [1]. Then, a pre-trained contrastive learning model is trained to
enhance the encoder’s feature representation by aligning features from CE-CT
and textual descriptions to NC-CT. After, a specialized classification head and
a decoder are trained on NC-CT alone using a fixed pre-trained encoder. This
approach aims to provide a more accurate and efficient method for the diagnosis
of AD and localization of false lumen in emergency settings, potentially leading
to improved clinical decision-making and patient care.

The main innovations of the proposed method can be summarized as follows:
1) A novel multimodal contrastive learning architecture that integrates informa-
tion from multiple modalities to enhance visual representations of NC-CT;2)
Through the pre-trained NC-CT feature extraction encoder, different down-
stream tasks can be supported, such as AD detection and lumen segmentation,
and achieve consistent performance improvements; 3) The proposed framework
works effectively with 5-mm-thick NC-CT, presenting potential for clinical ap-
plication in emergency settings.

2 Method

The 3D multimodal contrastive learning architecture overview is illustrated in
Fig. 1, which has three main components: data preprocessing, a multimodal
contrastive learning architecture, and sub-task networks. In the first step, we
employ automatic methods to segment and straighten the aorta. In the second
step, a multimodal contrastive learning model is utilized to train. In the last
step, we fine-tune the pre-trained image encoder for AD classification and lumen
segmentation using NC-CT.
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Fig. 2. Text processing module.

Aorta Segmentation and Anatomy Simplification. To reduce unrelated
content noise, we extract the aorta for subsequent analysis. As shown in Stage
1 of Fig. 1, we employ an open-source deep learning segmentation tool, called
TotalSegmentator [26] to segment the aorta from NC-CT. Then, we straighten
the curved aorta to simplify the geometric complexity using automatic scripts
from 3D Slicer (version 5.6.2, http://www.slicer.org).

Task Definition. The aorta dataset used in this study could be represented as
(xu, xv, xt), where xu represents NC-CT images, xv represents CE-CT images,
and xt represents textual reports which describe the diagnostic information in xv.
Our goal is to train a parameterized image encoder Eu by contrastive learning,
which maps an image to a fixed-dimensional vector. Then we utilize Eu for the
downstream tasks.

Feature Extraction. To preserve the modality-specific characteristics of NC-
CT and CE-CT, we employ two independent 3D ResNet encoders (Eu and Ev)
for feature extraction. The weight-sharing strategy, though generally used in
multimodal learning, is not suitable here due to the significant distribution gap
between NC-CT and CE-CT caused by the contrast agent. By decoupling the
encoders, Eu can focus on capturing structural information from NC-CT, while
Ev is optimized for functional information from CE-CT. This design ensures that
the modality-specific features are well preserved and aligned in the embedding
space.

Furthermore, we design a text processing module to better extract the fea-
tures of diagnosis reports. As shown in Fig. 2(a), We first introduce a large
language model (GPT-4o) to standardize the textual inputs. The aligned diag-
nostic report is then converted to text features via a tokenizer and MedCLIP [25],
this process is displayed in Fig. 2(b).

We sample a set of multimodal data pairs (x̃u, x̃v, x̃t) from the dataset. The
data of different modalities within a single pair is converted into embedding
features. Then a linear transformation is applied to obtain the resulting fea-
tures fu, fv and ft, where f(u,v,t) ∈ Rd. At the training stage, N input data
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Training Loss Function. In the training process, a weight-aware multimodal
contrastive loss Lcon is proposed to maximize the similarity between aligned
modalities:
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the cosine similarity, τ ∈ R+ is a temperature hyperparameter, and φ(α, β) is a
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Furthermore, we propose a modality consistency loss Lcns to better integrate
information from the three modalities. Lcns emphasizes the consistency of the
three modalities in the feature representation space, ensuring the features from
different modalities describing the same object are as similar as possible, thus
promoting the fusion of multimodal information:

Lcns = − 1
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where M′ = {(u, v), (u, t), (v, t)}. By combining Lcon and Lcns with weights w1

and w2 respectively, the overall training loss L could be expressed as:

L = w1 · Lcon + w2 · Lcns (4)

Sub-task Fine-tuning. We continue to fine-tune a classifier and a decoder to
improve the performance of the previous well-trained feature extraction encoder
for classification and segmentation. As shown in Stage 3 of Fig. 1, sub-task net-
works use the frozen pre-trained NC-CT encoder to transfer the NC-CT volume
into a group of features and continue to train two sub-networks for AD detec-
tion and true & false lumen segmentation. Note that the sub-task network is a
lightweight CNN using a binary cross-entropy loss:

L = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (5)
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Table 1. Validation results of AD detection by different models.

Methods ACC Sens Spec Prec F1-Score AUC
ResNet-18 [9] 0.912 0.921 0.902 0.914 0.918 0.976
ResNet-50 [9] 0.904 0.898 0.911 0.919 0.908 0.955

DenseNet-121 [11] 0.818 0.928 0.686 0.779 0.847 0.914
Inception-V3 [23] 0.797 0.906 0.667 0.764 0.829 0.888

DeepLA [7] 0.838 0.872 0.797 0.836 0.854 0.913
MTGA [27] 0.916 0.953 0.875 0.896 0.924 0.973

Ours 0.958 0.951 0.973 0.987 0.969 0.983

3 Experiments

3.1 Experimental setup

Dataset. The dataset was collected from patients with both NC-CT scan and
CE-CT scan with diagnostic reports from xxx Hospital. The training dataset
consisted of 580 subjects (290 with AD and 290 without), and the test dataset
consisted of 239 subjects (127 with AD and 112 without). We register the images
using Elastix [14].

The output volume size is set to 80 × 80 × 128. All the volumes were re-
sampled to an average resolution of 1.0 × 1.0 × 5.0 mm3. The CT values of the
NC-CT and CE-CT volumes are truncated to the range of [0, 300] and [0, 800]
in the Hounsfield unit, respectively.

Implementation Details. The proposed framework is implemented using Py-
Torch (version 1.8) on an NVIDIA V100 GPU. The contrastive learning model
is trained for 500 epochs using a cosine optimizer with an initial learning rate
of 1 × 10−4. The sub-task network is trained for 200 epochs using an Adam
optimizer with an initial learning rate of 1 × 10−5. w1 and w2 in eq. 4 are set
to 1 and 0.01, respectively.

We compare the proposed framework with four state-of-the-art classification
models, such as ResNet-18 [9], ResNet-50, DenseNet-121 [11] and Inception-
V3 [23]. In addition, two AD detection frameworks, DeepLA [7] and MTGA
[27] are included. For segmentation performance, three segmentation models are
included, 3D UXNet [15], 3D nnU-Net [12] and SAM-Med3D [24].

To evaluate the performance of AD detection, we employ several metrics, in-
cluding accuracy (ACC), sensitivity (Sens), specificity (Spec), precision (Prec),
F1-score and Area Under the Curve (AUC). To evaluate the performance of lu-
men segmentation, we employ the Dice Similarity Coefficient and Jaccard Index.

3.2 Experimental results

AD Detection. The key purpose of the proposed method is to classify AD
and non-AD using NC-CT. All the classification tasks are evaluated on our test
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Table 2. Results of lumen segmentation on NC-CT by different models.

nnUNet [12] SAMM3D [24] UXNet [15] Ours NoS
Dice Similarity Coefficient

Normal 0.823 0.823 0.848 0.866 0.796
True 0.653 0.618 0.661 0.672 0.620
False 0.493 0.508 0.571 0.577 0.538
Avg 0.656 0.650 0.693 0.705 0.651

Jaccard Index
Normal 0.700 0.699 0.738 0.765 0.671
True 0.494 0.459 0.504 0.517 0.464
False 0.350 0.360 0.415 0.424 0.395
Avg 0.515 0.506 0.552 0.569 0.510

Fig. 3. Example segmentation results of true & false lumens by different models.

dataset. Table 1 shows the performance of our proposed method and benchmark
methods on AD detection. Our method achieves an accuracy of 0.958, a Spec
of 0.973, a Prec of 0.987, an F1-score of 0.969, and an AUC of 0.983. These
results outperform those of four SOTA classification models and two previously
published AD detection frameworks.

The superior performance of the proposed method can be attributed to its
unique multimodal contrastive learning architecture. By integrating information
from multiple modalities in the pre-training process, the encoder can capture
more comprehensive and discriminative features from NC-CT to enhance clas-
sification accuracy significantly. Thus, it has the potential to enable earlier and
more cost-effective diagnosis of AD in emergency settings.

True and False Lumen Segmentation. An additional sub-task is to segment
the true and false lumens of AD patients which represents the most clinically
concerning hazard, aortic tear. The quantitative segmentation results are pre-
sented in Table 2 by our method and three SOTA methods. We also compared
the results obtained by our method on the dataset without anatomy simplifi-
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Table 3. Ablation results of multimodal contrastive learning method.

Methods ACC Sens Spec Prec F1-Score AUC
NCCT-CECT 0.791 0.795 0.786 0.808 0.801 0.897
NCCT-TEXT 0.895 0.945 0.839 0.870 0.906 0.964

NCCT-CECT-TEXT (NoS) 0.899 0.874 0.929 0.933 0.902 0.968
NCCT-CECT-TEXT (ResNet-18) 0.937 0.945 0.929 0.938 0.941 0.975

NCCT-CECT-TEXT (Ours) 0.958 0.951 0.973 0.987 0.969 0.983

cation, which is denoted as NoS(non-straightened aorta data) in the table. Our
method outperforms others with a DSC of 0.866 for lumen without dissection
and 0.672 & 0.577 for true & false lumens with dissection, respectively. The seg-
mentation results demonstrate a more accurate location of the false lumen of AD
patients, providing more insights for subsequent clinical treatments. An example
of segmentation results is shown in Fig. 3, red for true lumen and green for false
lumen. The proposed framework’s segmented true and false lumen masks were
more accurate than others.

Ablation Study. The ablation results are summarized in Table 3 with three
main parts. First, we split the proposed multimodal framework into two inde-
pendent sub-frameworks to separately verify the efficiency of image-text and
image-image compared to our proposed image-image-text learning. Second, we
verify the performance of the non-straightened aorta data. We also verify the
performance of ResNet-50 encoder compared to a smaller model like ResNet-18.
Our proposed method achieves the best performance, highlighting the benefits
of integrating different modalities and aorta geometry simplification.

4 Discussion and Conclusion

In this study, we proposed a multimodal contrastive learning framework de-
signed to improve the performance of AD detection and lumen segmentation
using NC-CT. The image encoder was pre-trained to extract features from CE-
CT and corresponding textual reports through multimodal contrastive learning,
and then finetuned a classifier and a decoder for AD detection and true & false
lumen segmentation. Our experimental results demonstrated that this frame-
work significantly outperforms current SOTA models in terms of AD detection
accuracy and segmentation performance based on NC-CT.

However, our proposed method still has limitations, such as only using the
CT information of the aorta area and discarding other content that can assist in
diagnosis, and the dataset size is still limited for large models which may limit
the performance. We will further improve it in subsequent work.

Despite this, the proposed methodology holds substantial promise for mini-
mizing AD misdiagnosis in emergency settings through the automatic workflow
with widely available non-contrast CT.
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