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Abstract. Establishing pixel/voxel-level or region-level correspondences
is the core challenge in image registration. The latter, also known as
region-based correspondence representation, leverages paired regions of
interest (ROIs) to enable regional matching while preserving fine-grained
capability at pixel/voxel level. Traditionally, this representation is im-
plemented via two steps: segmenting ROIs in each image then matching
them between the two images. In this paper, we simplify this into one
step by directly “searching for corresponding prompts”, using extensively
pre-trained segmentation models (e.g., SAM) for a training-free regis-
tration approach, PromptReg. Firstly, we introduce the “corresponding
prompt problem”, which aims to identify a corresponding Prompt Y in
Image Y for any given visual Prompt X in Image X, such that the two
respectively prompt-conditioned segmentations are a pair of correspond-
ing ROIs from the two images. Secondly, we present an “inverse prompt”
solution that generates primary and optionally auxiliary prompts, invert-
ing Prompt X into the prompt space of Image Y. Thirdly, we propose a
novel registration algorithm that identifies multiple paired correspond-
ing ROIs by marginalizing the inverted Prompt X across both prompt
and spatial dimensions. Comprehensive experiments are conducted on
five applications of registering 3D prostate MR, 3D abdomen MR, 3D
lung CT, 2D histopathology and, as a non-medical example, 2D aerial
images. Based on metrics including Dice and target registration errors
on anatomical structures, the proposed registration outperforms both
intensity-based iterative algorithms and learning-based DDF-predicting
networks, even yielding competitive performance with weakly-supervised
approaches that require fully-segmented training data.

Keywords: Image registration · Corresponding representation · Prompt
engineering · Segment Anything Model (SAM).

1 Introduction

Image registration aligns two or more images to a common coordinate system,
allowing for the overlay and analysis of corresponding features [7,10,26]. This
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Fig. 1: PromptReg performs generic registration tasks with ROI-based correspondence
representation. Given any point prompt ✩, it identifies corresponding ROIs in paired
images, where the blue and yellow indicate prompt locations inside and outside anatom-
ical ROIs, respectively.

process is equivalent to establishing a ubiquitous correspondence at pixel/voxel
level, that is, at each pixel/voxel location, a corresponding spatial location on
another image is determined by registration. Pursing such ubiquitous correspon-
dence under this premise, the correspondence is often formulated by paramet-
ric spatial transformation [27], such as rigid and deformable models, or dense
samples of displacement vectors at all discrete pixel/voxel locations, i.e., dense
displacement fields (DDFs) [8,2].

Between medical images, specific meanings of the correspondence may vary,
for example, to indicate the same anatomy scanned at different time points or
structures that share homology from different subjects. As pointed out in pre-
vious works [14,17], correspondence cannot (and need not) be defined necessar-
ily everywhere (i.e., at every pixel/voxel) in many clinical applications. Conse-
quently, a new ROI-based representation has recently been proposed. This corre-
spondence representation led to a new registration algorithm, which utilised the
Segment Anything Model (SAM) to segment multiple regions-of-interest (ROIs)
in two images and matched them in feature space [17], namely SAMReg.

SAMReg relied on the SAM’s unconditional segmentation capability to gen-
erate many candidates ROIs before matching their prototype features. However,
this algorithm is inherently limited by its general-purposed formulation. First,
the generated candidate ROIs cannot be controlled with respect to specific ap-
plications of interest. For instance, when prior knowledge on which class of ROIs
should be considered more important, there is no mechanism to incorporate
it. Second, the prototype matching is based on similarity (e.g. cosine similar-
ity) between features of the candidate ROIs. This may be effective for a specific
application, using carefully tuned hyperparameters such as the prototype dimen-
sionality and the similarity threshold, but does not guarantee that the matched
ROIs are of the same class between the two images.

In this study, we first develop methodologies for searching corresponding
ROI pairs of the same class. Unlike the previously proposed unconditioned al-
gorithm [17], the proposed approach exploits the prompt-conditioned SAM for,
arguably, more controllable ROI class definitions. These classes may be i) pre-
defined by prior clinical requirements to aid application-specific registration al-
gorithms or facilitate an interactive registration; but can also be ii) randomly
sampled for general-purpose, no-prior image registration algorithms. Focusing
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Fig. 2: Comparison of correspondence ROIs from different paradigms, where the red
denotes the targeted ROI and the arrow represents the given prompts.

on point-based prompts, we formalize this as a “corresponding prompt problem”
in Sec. 2. We then propose a solution by inverting a given prompt in Sec. 3.1.

With prompt-based segmentation, the inherent limitation in SAM and its
generalisation to medical images became evident. For example, sensitivity in
prompt localisation leads to unstable segmented ROI was reported [12,19], which
was found more predominant in a domain-shifted dataset, such as medical im-
ages, and needed to resort a nontrivial fine-tuning effort [22,30]. For our regis-
tration algorithms, we further propose a marginalization strategy, over both the
prompt sampling space and the transformation space, in Sec. 3.2.

In summary, our main contributions are: 1)We propose a new image regis-
tration paradigm, which seeks correspondence-conditioned ROI pairs from two
respective images. To our knowledge, it is the first promptable registration trial.
2) Using SAM without any adaptation or fine-tuning, we introduce the general-
purpose PromptReg by segmenting corresponding ROIs from a pair of images,
based on any (manual or randomly-sampled) given vision prompts. 3) Exten-
sive experiments show that the proposed registration algorithms outperform the
commonly-adopted iterative registration and unsupervised registration, and is
competitive with weakly-supervised registration across five clinical applications.

2 Corresponding Prompt Problem

Revisiting ROI-based Correspondence Representation. The ROI-based
correspondence representation for registration [17], spatial locations X and Y
within a moving and a fixed image, Ix and Iy, respectively, is considered cor-
responding ROIs, represented through K pairs of ROI {(Rx

k , R
y
k)}Kk=1. Here,

Rx
k = {xl}

Lx
k

l=1 and Ry
k = {yl}

Ly
k

l=1 are two sets of Lx
k and Ly

k spatial discrete
locations (e.g., pixels/voxels) in the respective moving and fixed image spaces,
xl ∈ X and yl ∈ Y. This representation is thought necessary and effective for
clinical practice. However, a dense correspondence representation, such as the
DDF T , can also be obtained by refining the region-specific alignment measure∑K

k=1 Lroi(R
y
k, T (Rx

k , Θ)), where Θ is parameters of the transformation T .
The corresponding ROIs can be acquired through two ways: (1) segment-

ing known shared classes, or (2) segmenting unknown classes and then match-
ing them. Currently, the former is conducted by weakly-supervised registration
methods [15,14], which train the segmentor with predefined K-class groundtruth
to predict intuitive corresponding ROIs of the same classes C = [C1, ..., CK ]⊤,
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C = Cx = Cy, albeit with limited number of representation ROIs and narrow
generalizability. The latter paradigm is implemented by recent SAMReg [17],
consisting two independent segmentation without conditioning prompts, pro-
ducing finite Kx and Ky classes Cx and Cy, with the highest class probabilities,
respectively. Second, the subsequent matching identifies K shared classes C, and
{Ck}Kk=1 = {Cx

k}K
x

k=1 ∩ {Cy
k}K

y

k=1. In practice, it is this two-step approximation
that limits the SAMReg to represent a required ROI correspondence that are
locally accurate and densely sampled.
Why “Searching Corresponding Prompts” Instead of “Matching Cor-
responding ROIs”? A mirrored paradigm of SAMReg for segmenting known
shared classes at the same time is to estimate two vision prompts Zx

k and Zy
k , for

Ix and Iy, respectively, such that the common class Ck can be segmented by con-
ditioning two SAM inferences using these two, namely, corresponding prompts.
Compared with predefined classes in weakly-supervised methods, the class Ck,
conditioned on prompt Zx

k , requires neither specific labels nor anatomical knowl-
edge, while still permitting targeted human interaction via Zx

k .
The “Searching Corresponding Prompts” pattern is more cost-effective than

SAMReg’s “Matching Corresponding ROIs,” both globally and locally. SAMReg
cannot ensure that segmented classes from two independent SAM inferences in-
tersect, {Cx

k}K
x

k=1 ∩ {Cy
k}K

y

k=1 ̸= ∅, nor guarantee a specific local ROI class C∗

exists in both, C∗ ∈ ({Cx
k}K

x

k=1 ∩ {Cy
k}K

y

k=1). In contrast, corresponding prompts
resolve empty intersections by leveraging predefined (manual or automatic) tar-
get classes C∗ (Fig. 2). For dense correspondence, SAMReg lacks control over
ROI sampling. Even with many candidate ROIs, there is no guarantee that they
or the matched set C will align with the targeted ROIs. The finite sizes of Cx

and Cy further constrain C, increasing mismatches as more are assigned to C.
What is the Definition of “Corresponding Prompt Problem”? Given im-
ages Ix and Iy, the goal is to estimate same-class ROIs. A vision prompt for Ix

is Zx
k = {xp}

Px
k

p=1, where xp ∈ X and P x
k is the number of discrete pixels/voxels.

The pre-trained SAM segments ROI as Rx
k = fSAM (Ix, Zx

k ), assuming Rx
k be-

longs to class Ck.
The aim is to search for the “corresponding prompt” Zy

k = {yp}
Py

k
p=1, defined

by P x
k locations yp ∈ Y in the second image Iy, such that the segmented ROI

Ry
k = fSAM (Iy, Zy

k ) in image Iy mirrors the same class Ck of the ROI Rx
k in

image Ix and (Rx
k , R

y
k) is considered as the “corresponding ROI”. This paradigm

allows for the investigation of class-consistency across different images, leverag-
ing the capabilities of the SAM or its variants to perform corresponding ROI
segmentation, based on either predefined or arbitrary visual prompts.

3 PromptReg: Promptable Registration Algorithm via
Inverse Prompt Engineering

The proposed PromptReg comprises two steps: (inverted) prompt searching and
prompt marginalization. In the first step, prompt searching infers the correspond-
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ing prompt on the target image, while in the second step, prompt marginalization
leverages an augmentation-based strategy to improve robustness.

3.1 Prompt Searching

Prompt searching aims to map a given prompt Zx
k from an image Ix to a cor-

responding prompt set Zy
k on the other image Iy, ensuring both represent the

same class Ck. In this section, the prompt set Zy
k is set to include a primary

prompt, derived through an inversion process linking Ck to Iy, and an optional
auxiliary prompt. When the primary prompt alone cannot effectively represent
Ck, (e.g., due to large image differences or low prominence of Ck), the auxiliary
prompt, located at the foreground-background boundary, supplements Zy

k .
Primary Prompt. In a typical SAM inference for segmenting ROI Rx

k from
image Ix, an image encoder E im embeds Ix ∈ RH×W×D into features F x ∈
RH′×W ′×D′×N ′

. A prompt encoder Epr embeds the prompt Zx
k into a class en-

coding Ck, which may be unknown or unspecified, determined by Zx
k . The mask

decoder D then decodes F x, conditioned on Ck, to produce the segmented ROI
Rx

k . Rx
k is further abstracted as a prototype Gk = fproto.(Rx

k , F
x), where fproto. is

the prototype extraction function iterating all voxel locations, commonly used in
prototypical few-shot learning [9,16,5,31]. The resulting prototype Gk ∈ R1×N ′

serves as an alternative representation of the class Ck.
Gk is considered a function of only one variable Zy

k , i.e., Gk = f(Zx
k ) =

fproto.(D(F x, Epr(Zy
k )), F

x). Using the first-order Taylor expansion Gk ≈ f0 +
J ·Zy

k obtains a general solution for Zy
k ∝ J−1 ·Gk, where f0 is a constant and

J ∈ RN ′×3 (given 1 point prompt) is the Jacobian with respect to the function
f , specifically, J = ∂f

∂Zx
k
= ∂fproto.

∂D · ∂D
∂Epr · ∂Epr

∂Zx
k
.

To inverse the inference with image Iy and unknown prompt Zy
k , the log-

its of class probability maps S′x
k , S′y

k ,∈ RH′×W ′×D′
are generated using cosine

similarity function fsim, e.g., S′x
k = fsim(Gk, F

x),where S′x
k(i′) =

Gk·Fx
(i′)

∥Gk∥·∥Fx
(i′)∥

,

where i′ ∈ R3 are all the 3D “spatial” locations in the feature space. The bracket
subscripts (i′) is denoted to index the scalars and vectors, from S′x

k and F x,
respectively. With the same Gk, S

′y
k = fsim(Gk, F

y) is computed.
Following the Taylor expansion, S′y

k ≈ (fsim)0 + J sim · Gk, leads to the
association between S′y

k and Zy
k that

Zy
k = (J sim)−1 · J−1 · S′y

k + ρ, (1)

where ρ is a constant set manually and the similarity Jacobian matrix J sim ∈

RH′W ′D′×N ′
is derived by J sim =

∂S′y
k

∂Gk
,where

∂S′y
k(i′)

∂Gk
=

Fx
(i′)−S′x

k(i′)·
Gk

∥Gk∥
∥Fx

(i′)∥·∥Gk∥ .

The obtained inverse prompt Zy
k corresponds to the given prompt Zx

k with the
same structural format, i.e., it adheres to a one-to-one or multiple-to-multiple
correspondence between points.
Auxiliary Prompts. Conditioned on the primary prompt Zy

k , the segmented
ROI Ry

k = D(F y, Epr(Zy
k ) is generated. Ideally, Ry

k should closely match the cor-
responding ROI, Rx

k , produced from prompt Zx
y . However, Rx

k and Ry
k may not
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align in some cases, for example, Ry
k partially capture a complete structure iden-

tified by Rx
k . To address these mismatches, more precise prompts are necessary

to define the desired ROI Ry
k.

Given the inherent consistency of registration tasks, misaligned ROIs (Rx
k

and Ry
k) exhibit abnormal shapes. To quantify this, we compute the Hausdorff

distance dx→y
H and dy→x

H between their contours, identifying points of maximum
discrepancy x∗ and y∗. If ∥dx→y

H −dy→x
H ∥ > σ, where σ is empirically determined,

x∗ or y∗ is considered an anomaly.
The prompt is iteratively placed until convergence, i.e., ∥dx→y

H − dy→x
H ∥ < σ.

In s-th iteration, based on the identified anomaly, we generate a new prompt,
zyk,s. This prompt can be either a negative point or a positive point:

zyk,s =

{
y∗ (neg), dx→y

H > dy→x
H ,

x∗ + ϵ∇fx→y(r)
∣∣
r=x∗ (pos), dx→y

H < dy→x
H ,

(2)

where fx→y(r) = 1
2∥r − y∗∥2. These prompts are iteratively incorporated into

Zy
k to progressively align Ry

k with the Rx
k .

3.2 Prompt Marginalization

Probabilistic Notes. The SAM models class probability as Rk = p(Ck|I,Zk).
Marginalizing over Zk and p(Ck|I) =

∫
Zk∈ΩZx

k

p(Ck|I,Zk)p(Zk|I)dZk, where
ΩZx

k
defines the prompt sampling space on Ix. Multiple prompts enable marginal-

ization, capturing Zk uncertainty and improving spatial coverage (i.e., K > 1).
For a second image Iy, estimating Zk = Zy

k considers it a parameter linked
to the prototype Gx

k from Zx
k (Sec. 3.1). The marginal likelihood with fixed Iy

is:
∫
Ry

k∈ΩR
y
k

p(Ry
k|Z

y
k , I

y)dRy
k =

∫
Gx

k∈ΩGx
k

p(Gx
k|Z

y
k , I

y)dGx
k =

∫
Zk∈ΩZx

k
,I∈ΩIx

p

(Zk, I|Zy
k , I

y)d(Zk, I). Here, Ry
k and Gx

k denote the random variables of seg-
mented ROI and prototype, and Ω∗ defines the sampling space. Estimating this
marginal likelihood follows Bayesian model averaging [25].
Spatial Transformation for Aggregation. To sample Zk and I from re-
spective ΩZx

k
and ΩIx , one could argue the benifit in applying independent

spatial transformation Aj to each. However, to ensure the transformed prompt
Z̃x
k,j = Zx

k ◦ Aj and image Ĩxj = Ix ◦ Aj represent the same class Ck, the same
spatial transformation Aj is applied.

Based on the J transformed images {Ĩxj } and prompts {Z̃x
k,j}, a set of ROIs

(class probability maps) {R̃x
k,j} are predicted. Using the inverse-transformed

ROIs {R̃x
k,j ◦A

−1
j }, a set of corresponding prompts are computed {Z̃y

k,j}, which
obtains a set of corresponding ROIs {R̃y

k,j}, for each class Ck. The final pair of
corresponding ROIs (R̄x

k, R̄
y
k) are averages: R̄x

k = 1
J

∑J
j=1 R̃x

k,j , R̄
y
k = 1

J

∑I
j=1 R̃

y
k,j .

4 Experiments and Results

Datasets and Evaluation Metrics: We evaluate our method in five medical
and non-medical datasets: MR-Prostate [1], MR-Abdomen [18], CT-Lung [13],
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2D-Pathology [20] and 2D-Aerial [23]. The first three datasets are three-dimensional
and contain MR and CT imaging modalities, while the latter two are two-
dimensional. To ensure a fair comparison with other supervised registration
methods, 80% of the images are utilized for training purposes. Our method does
not use this subset for training and is tested on the remaining data alongside
other methods. Additionally, for ablative experiments, the proposed algorithm
is implemented to all available images. Regarding registration strategies, inter-
subject registration is applied to the MR-Prostate and MR-Abdomen datasets
to align images to a standard reference. Conversely, intra-subject registration
applies for the lung, histological, and aerial images to align image pairs that ac-
quired at varying time. Metrics include Dice and target registration error (TRE).
For non-rigid registrations, Dice is assessed on moved and fixed critical anatom-
ical structures, with TRE derived from the centroids of these ROIs.
Implementation Details: In our evaluation experiments, the prompt is ran-
domly sampled four times to infer dense correspondence. Hyperparameters σ and
ϵ for auxiliary prompt setting is set to 20.0 and 2.0, respectively. For marginal-
ization in spatial transformation, transformations such as flipping, rotation, and
scaling are randomly sampled, with flipping consisting of horizontal and vertical,
rotation ranging from 0◦ to 360◦, scaling ranging from 0.5 to 2.5. The imple-
mentation is based on PyTorch and MONAI [3]. The algorithm was executed on
an NVIDIA Quadro GV100. A code demo is available at: PromptReg.

Methods MR-Prostate MR-Abdomen CT-Lung 2D-Pathology 2D-Aerial
Dice TRE Dice TRE Dice TRE Dice TRE Dice TRE

NiftyReg[24] 7.68±3.98 4.67±3.48 8.93±2.21 3.13±2.89 10.93±2.02 4.23±1.64 6.81±3.02 5.90±3.75 10.21±3.02 4.02±2.25
VoxelMorph[2] 55.94±3.34 3.68±1.98 58.1±3.95 2.76±2.41 77.98±2.72 3.24±0.81 59.34±3.72 4.31±2.13 72.73±2.41 3.53±1.30
LabelReg[15] 76.72±3.23 2.72±1.23 75.97±2.42 1.56±1.34 83.56±2.43 1.52±0.86 - - - -
KeyMorph[11] 70.52±3.25 3.19±1.63 72.77±2.56 2.21±1.87 81.71±2.26 2.93±0.86 73.15±2.39 3.47±2.01 80.22±2.13 3.05±1.19
TransMorph[4] 71.77±3.01 3.11±1.27 73.81±2.52 2.10±1.76 81.97±2.19 2.84±0.79 75.42±2.08 3.29±1.95 82.63±2.09 2.91±1.02
SAMReg[17] 75.67±3.19 2.09±1.22 73.65±2.52 1.43±1.21 85.23±2.16 1.31±0.91 69.87±3.70 3.12±1.23 85.34±2.31 2.57±1.10

PromptReg w SAM[21] 76.48±2.92 2.10±2.68 72.48±3.57 2.38±1.13 87.76±3.21 2.02±1.03 72.71±3.63 3.41±0.91 86.65±1.80 2.62±1.01
PromptReg w MedSAM[22] 72.91±3.12 3.32±2.30 73.86±3.37 2.18±1.22 88.40±3.23 1.66±0.99 71.47±3.52 3.14±1.34 83.77±2.03 3.69±1.78
PromptReg w SAMed2d[6] 74.28±3.39 3.70±2.04 74.55±3.54 1.86±1.05 88.03±3.10 2.06±0.84 87.35±3.89 3.90±1.97 82.69±2.13 2.86±1.65
PromptReg w SAMed3d[29] 75.63±2.61 3.95±1.59 75.35±2.99 1.72±1.01 88.44±2.83 1.73±0.84 - - - -
PromptReg w 3dAdapter[30] 77.76±2.20 2.06±0.91 77.3±2.53 1.22±0.92 90.46±2.53 1.20±0.82 - - - -

Table 1: Comparison of different registration models and our PromptReg with various
promptable models across five datasets, highlighting the best 3D model results in bold
and the best 2D model results with an underline.

Comparison with SoTA Methods. Table 1 presents a quantitative compar-
ison across various medical image registration methods, including NiftyReg [24]
that represents a class of non-learning iterative registration algorithms [28],
SAMReg [17], an existing SAM-based training-free algorithm, and also contrast
them, albeit less equitably, unsupervised methods VoxelMorph, KeyMorph and
lastest TransMorph [2], and ROI-supervised LabelReg [15], on five datasets.
Morph variants and LabelReg have been proposed for medical image research
datasets, with LabelReg additionally requiring fully-segmented anatomical anno-
tations. As shown in Table 1, PromptReg consistently outperforms these meth-
ods across all datasets without dataset-specific tuning, particularly competitive
in intra-subject registration tasks perhaps due to higher prevalence in consis-
tent intra-subject ROIs. Compared with SAMReg (5 paired ROIs), PromptReg

https://github.com/sqhuang0103/PromptReg.git
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Prompt Location Dice TRE
outsideROI insideROI

✓ ✓ 77.76±2.20 2.06±0.91
✓ 75.23±3.11 2.83±1.06

✓ 81.77±3.08 1.90±0.91

Table 2: Ablation of given prompt
Zx

k location on MR-Prostate dataset,
where ROI denotes the target anatom-
ical region.

Aux Threshold σ(pix) Dice TRE
10.0 75.12±2.32 2.29±1.01
20.0 77.76±2.20 2.06±0.91
30.0 76.43±2.29 2.07±0.97
40.0 74.79±2.43 2.11±1.02
50.0 72.50±2.51 2.18±1.08

+∞ (pri. only) 70.12±2.96 3.12±1.31

Table 3: Ablation of threshold σ for
inverse prompt Zy

k on MR-Prostate
dataset.

# of Prompts Dice TRE
1 70.07±3.61 4.07±2.03
2 72.87±2.44 3.42±1.38
3 75.32±2.31 2.64±1.42
4 76.72±2.33 2.27±1.29
5 77.34±2.37 2.06±1.25
6 77.84±2.32 2.00±1.21

Table 4: Ablation of given
prompt Zx

k quantity on MR-
Prostate dataset.

Table 5: Statistics of the number and type
of marginalization iterations on MR-Prostate
dataset.

demonstrates lower variance that may indicate greater robustness. Additionally,
when local and/or dense correspondence is required clinically, the PromptReg
exhibited superior capability to generate more paired ROIs that are indeed cor-
responding to each other - a limitation of SAMReg discussed in Sec. 2.

Comparison of Promptable Models. Promptable models can be directly
integrated into the PromptReg paradigm, facilitating the adoption of cutting-
edge segmentation models for registration. Table 1 evaluates various models with
four random prompts each. For 3D images processed with 2D models (SAM,
MedSAM, SAMed2d), slices are handled individually. Results show that 3D-
specific models (SAMed3d, 3DAdapter) generally perform better due to their 3D
awareness. SAM, however, excels in non-medical tasks due to its generalizability.
MedSAM and SAMed2d perform well on the Abdomen dataset, benefiting from
pre-training on abdominal data. However, prior exposure doesn’t always improve
registration, e.g., SAMed2d, pre-trained on prostate data, tends to focus on
central structures, leading to inconsistencies when prompted outside these ROIs.

Ablation on Given Prompt Zx
k . a) Location. PromptReg allows predefined

prompt locations. Constraining prompts within ROIs significantly improves reg-
istration, especially in inter-subject cases (Table 2). b) Quantity. More prompts
enhance performance but with diminishing returns, improving ROI alignment
and downstream tasks (Table 4).

Ablation on Inverse Prompt Zy
k . a) Threshold σ. Table 3 shows that σ = 20.0

optimizes registration by balancing mismatch tolerance and auxiliary prompts.
b) Transformation A. Fig. 5 shows that scaling outperforms rotation for < 7
iterations, while a random strategy works best for more.
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5 Conclusion

In this study, we introduce a new “corresponding prompt problem” that re-
formulates the image registration to search corresponding prompts for pre-trained
segmentation models, with a proposed promptable registration algorithm, PromptReg;
comprehensive experiments highlight its competitive performance, indicating a
new direction for registration research and a new application for vision founda-
tion models.
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