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Abstract. Fiber orientation distribution function (fODF) estimation
from diffusion MRI is crucial for mapping brain connectivity but often
requires extensive multi-shell acquisitions and complex computational
methods. While supervised deep learning approaches have shown promise
in accelerating this process, they typically require large training datasets
and face challenges with domain shifts and interpretability. We present
UFO-3, an unsupervised framework that combines a three-compartment
biophysical model with deep learning for fODF estimation from single-
shell data. The method leverages a U-Net architecture to simultaneously
estimate fiber orientations and tissue microstructure parameters while
maintaining physical constraints through an optimization-based recon-
struction. Evaluated on synthetic data across 2500 test cases, UFO-3
achieves superior angular accuracy (MAE < 10° at infinite SNR) and
correlation (ACC > 91%) compared to existing methods, particularly
in resolving challenging fiber crossings. On in vivo human brain data,
UFO-3 produces fODF reconstructions comparable to multi-shell refer-
ence methods while providing interpretable tissue parameter estimates.
The framework requires a one-time, subject-specific training of about
30min on a single consumer GPU and enables fast inference (< 10s
per subject), improving throughput compared to other unsupervised ap-
proaches that require hours or days of training. Our results demonstrate
that UFO-3 effectively balances reconstruction accuracy, biological inter-
pretability, and computational performance without requiring extensive
training data or multi-shell acquisitions.
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1 Introduction

Diffusion-weighted magnetic resonance imaging (dAMRI) has emerged as a pow-
erful non-invasive imaging modality for mapping white matter microstructure
and connectivity [18]. Fiber orientation distribution function (fODF) estimation,
which characterizes the directional distribution of nerve fibers, is crucial for un-
derstanding complex white matter architecture. Unlike diffusion tensor imaging
(DTI), fODF can resolve crossing fibers, enabling more accurate mapping of
brain connectivity [29]. Classical fODF estimation methods include constrained
spherical deconvolution (CSD) and its advanced variants [1, 2, 4, 5, 12, 28, 29]
and compartment models [30]. CSD models the diffusion signal as a spherical
convolution of a single-fiber response function and the fODF, whereas com-
partment models integrate intra-/extra-axonal and trapped water components
to jointly estimate microstructure and fODFs specifically within white matter.
Despite their robust performance in resolving complex fiber configurations, clin-
ical adoption is limited by high computational demands and the usual need
for extensive multi-shell acquisitions [12]—these prolonged scan times increase
susceptibility to motion artifacts that can degrade image quality, particularly
problematic for restless or uncooperative subjects.

Machine learning approaches have emerged to address these limitations,
broadly categorized into supervised and unsupervised methods. Supervised ap-
proaches leveraging deep neural networks [14, 21, 27, 31, 32] have demonstrated
the potential for fODF estimation from reduced diffusion gradient measurements
with notable computational efficiency, including applications in challenging clini-
cal scenarios [15, 16]. However, these data-driven methods rely on classical meth-
ods to generate training references, which in turn require densely sampled ac-
quisitions. This interdependence presents methodological challenges, including
domain shifts between training and test data [19, 20] and limited interpretabil-
ity of learned representations [13], raising considerations for clinical translation.

Recent unsupervised methods have explored alternative approaches to elim-
inate ground truth requirements by incorporating physical constraints and sym-
metries directly into neural architectures. Particularly, equivariant networks that
respect both spatial and rotational symmetries of diffusion signals [6-8| learn
fODF estimation through signal reconstruction. Alternative approaches using
neural fields [3] provide a more computationally efficient solution yet rely on pa-
rameterized models limited by assumptions, reducing flexibility and potentially
introducing biases. Despite their improved accuracy in resolving crossing fibers
and elimination of supervision requirements, these methods face practical chal-
lenges, including heavy computational overhead, lengthy training phases, and
complex multi-step pipelines that limit clinical utility.

To address these limitations, we propose UFQO-3, an Unsupervised frame-
work for Fiber Orientation distribution function estimation using a 3-compartment
model that integrates parametric tissue modeling with deep learning. Our method
enables accurate fODF estimation from single-shell data without requiring pre-
computed ground truth for training. The framework maintains interpretability
through biophysics-based constraints while offering a favorable balance between
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Three-Compartment Modeling
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Fig.1. UFO-3 framework overview. The input dMRI volume is first normalized
and projected onto V' dense nodes. A U-Net subsequently estimates four key compo-
nents: intra-axonal fODF (f), extra-axonal fraction («), trapped water fraction (v),
and isotropic diffusivity (Aiso). The final reconstruction integrates these estimates via
physics-constrained optimization that enforces sparsity and non-negativity.

computational demands and reconstruction accuracy, making it suitable for both
research and clinical applications.

2 Methods

Our UFO-3 framework combines biophysical modeling and unsupervised learning
for fiber orientation estimation, balancing data-driven learning with physical
principles, as illustrated in Fig. 1.

2.1 Biophysical three-compartment model

The input dMRI signal measurements are first normalized by b = 0 images
and projected onto a dense spherical graph with V' uniformly distributed nodes
using HEALPix [11], transforming each voxel’s representation from N to V di-
mensions. This projection operation, denoted as P(s), maps diffusion-weighted
signals s in g-space to points on a uniform HEALPix sphere, providing a con-
sistent representation for the neural network input.

Following Tran and Shi [30], we model the diffusion signal s € RV as:

s:A+[fa'y]T+n, (1)

where f € R” represents intra-axonal fODF coefficients, o extra-axonal fraction,
v trapped water fraction, and n noise.

The augmented system matrix A, = [A 3 e] combines the diffusion ma-
trix A € RV*/_ isotropic terms B = [e~1Aiso ... e 70N Aiso] T " and unity vector
e = 1ly. The core matrix A = Y © G integrates spherical harmonics Y =
[Yj(uz)]fjllj{, € RV and diffusion properties G = [Gl(bl)]iz?f\, e RV*J
matrices, where b is the b-value and u the gradient direction. Y represents the
real spherical harmonics (SH) basis functions of even order [ = 0,2, ..., L with
index j = m+((*+1+2)/2). Each G;(b;) = 27 f_ll Py(t)e~b it dt is repeated 20+ 1
times in row i of G for [ = 0,..., L, where P;(t) is the Legendre polynomial and
Aj = 0.0017 mm?/s the axonal diffusivity [33].
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2.2 Unsupervised learning framework

We implement a U-Net [26] with pointwise convolutions (1 x 1 x 1) that op-
erates on each voxel independently, enabling parallel processing. The network
processes 3 X 3 x 3 voxel patches solely for computational batching efficiency;
as the convolutions are strictly pointwise, this patch-based approach does not
introduce any spatial dependencies between voxels. The network Ny takes the
projected signal P(s) as input and estimates all tissue parameters:

[f a7 Xiso] = Np(P(s)) ", (2)

with Softplus activation ensuring non-negativity of a;, v, and Aig,.

Physical constraints are enforced via compartment normalization I f4+a+~ =
1 with I = [V/4r,0,---,0] € R’ and non-negativity Cp;f > 0. For sparsity
concerns, we employ hierarchical remeshing to construct projection matrix Cy; €
RM>J from hemisphere point sets V = {V;, V5, ...}, where each set contains M
uniformly distributed points on the unit hemisphere [24]. Here, M controls the
sampling density for non-negativity enforcement.

The complete optimization objective combines signal reconstruction with
physical constraints:

min %HS—A+ (Miso) [fa’y]TszLEReg(CMf), (3)

where A ()\iso) depends on the network-estimated extra-axonal diffusivity Aigo-

3 Experimental results

Here, we evaluate UFO-3 against conventional biophysics-based (CSD [28]) and
unsupervised learning methods (NODF [3], RT-ESD [6], and SHD-TV [7]). Im-
plemented in PyTorch [23], UFO-3 was trained on a single NVIDIA RTX 3090
GPU optimized by Adam [17] (batch size: 128, patch size: 32, learning rate:
1.5 x 1073). With V = 3072 and M = 258, training converged within 30 min per
subject for all experimental setups, with inference taking under 10s per subject.
The code is publicly available at https://github.com/tensor2023/ufo-3.

3.1 Synthetic fODF reconstruction analysis

Data. To simulate realistic conditions, we generate ground-truth (GT) fODFs
for five fiber configurations: (1) a single fiber; (2—4) two crossing fibers with angles
between them of 90°, 60°, and 45°, respectively; and (5) three crossing fibers
with an angle of 60° between each pair of adjacent fibers. For each configuration,
we generated 100 unique instances with randomly sampled orientations per SNR
level, resulting in a total of 2500 test cases (5 configurations x 5 SNRs x 100
orientations). These signals are synthesized w.r.t. the GT fODFs using Dipy
[9], following the biophysical model in Section 2.1. The synthesis incorporates
diffusion gradient directions from the b = 1000 s/mm? shell of five subjects from
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Fig. 2. Synthetic data evaluation results. (a) Qualitative comparison of fiber re-
construction performance. Each method’s reconstruction is shown for five distinct fiber
configurations: single fiber, two fibers crossing at 90°, 60°, and 45°, and three fibers
crossing at 60°. (b) Quantitative performance analysis showing Angular Correlation
Coefficient (left) and Mean Angular Error (right) across SNR levels from 10 to infinite
(00). An infinite SNR means no noise is added to the signal.

the Chinese Human Connectome Project (CHCP) [10]. The resulting data are
validated against real-world brain data as described by Tran and Shi [30] and
further augmented with Rician noise at signal-to-noise ratios (SNRs) of 10, 20,
30, 40, and 50dB.

Evaluation setup. We adopt two metrics from Zeng et al. [32]: (1) mean an-
gular error (MAE) to quantify the deviation between estimated and true fODFs,
and (2) angular correlation coefficient (ACC) to assess fODF similarity.

Results. Visual comparison (Fig. 2a) demonstrates UFO-3’s superior recon-
struction performance across tested configurations, particularly in preserving
sharp features and angular precision of crossing fibers in challenging 60° and
45° cases, while other methods show varying degrees of fiber orientation blur-
ring or artifacts.

Quantitative analysis (Fig. 2b) shows consistently lower mean angular error
across SNR levels, with UFO-3 achieving approximately 18° MAE at SNR =
10 dB compared to 28° to 32° for other methods. This advantage persists through
higher SNR levels, reaching below 10° at infinite SNR.

The angular correlation coeflicient results reinforce these findings, with UFO-
3 reaching above 91% ACC at infinite SNR, compared to 76 % to 87% for
competing approaches. Notably, even under severe noise (SNR = 10dB), UFO-
3 maintains 80 % ACC, with potential implications for clinical scenarios where
high SNR cannot be guaranteed.

3.2 In vivo human brain fODF estimation analysis

Data. We analyze five CHCP subjects [10] acquired on a 3T Siemens Prisma
MRI scanner. The data were collected using a multi-shell protocol with b-values
of 0, 1000, and 2000 s/mm?, with an isotropic spatial resolution of 1.5 mm, cover-
ing a field of view of 121 x 145 x 121 voxels. Standard preprocessing was applied,
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Fig. 3. Qualitative evaluation on in vivo human brain data. (a) Comparison of
fODF reconstructions overlaid on fractional anisotropy (FA) maps in a region contain-
ing crossing fibers between the corpus callosum and superior longitudinal fasciculus
(location indicated in the reference image). Multi-shell references (R1: Tran-Shi, R2:
MSMT-CSD) are compared against single-shell methods. (b) Estimated diffusivity of
the extra-axonal compartment (Aiso) shown in coronal (top) and axial (bottom) views.

including denoising, motion, and distortion correction. Our network uses 46 gra-
dient directions at b = 1000s/mm? as input for all experiments.

For qualitative analysis of the in vivo data where GT fODFs are unavailable,
we compute two references on the full multi-shell sequence of AMRI using the
compartment model [30] and multi-shell multi-tissue CSD (MSMT-CSD) [12],
denoted as R1 and R2, respectively. We additionally include single-shell three-
tissue CSD (SS3T-CSD) [4] for comparison.

Results. Fig. 3a shows fODF reconstructions in a representative region con-
taining crossing fibers between the corpus callosum and superior longitudinal
fasciculus. While the figure displays one subject for clarity, the observed patterns
and performance are consistent across all five analyzed subjects. The multi-shell
references (R1, R2) clearly delineate two distinct fiber populations with sharp
angular profiles and minimal spurious orientations. UFO-3 produces reconstruc-
tions that closely match these reference patterns, particularly in preserving the
sharp angular separation between crossing bundles and maintaining consistent
orientation estimates across the region.
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Among single-shell methods, notable differences emerge in their ability to re-
solve this complex architecture. NODF shows orientation blurring at crossing re-
gions, particularly evident in the transition zone where the two fiber populations
meet. Traditional CSD, while capturing the primary orientations, introduces spu-
rious peaks and shows increased angular uncertainty. SS3T-CSD demonstrates
improved crossing fiber resolution compared to CSD but exhibits some orienta-
tion dispersion in regions where the reference methods show more coherent fiber
populations. RT-ESD and SHD-TV achieve better suppression of spurious peaks
than CSD, though still show some degree of orientation uncertainty in complex
crossing areas.

An advantage of UFO-3 is its ability to estimate tissue microstructure prop-
erties alongside fiber orientations. Fig. 3b visualizes the extra-axonal compart-
ment diffusivity (Aiso) in coronal and axial views. The diffusivity maps reveal
anatomically plausible tissue properties: lower values in coherent white matter
regions (corpus callosum, corticospinal tract) and higher values in regions with
complex fiber crossings (centrum semiovale, thalamus). The maps show expected
contrasts between tissue types, with the highest diffusivity in CSF regions and
lower diffusivity in gray matter due to cellular density. White matter exhibits
intermediate diffusivity values that vary with fiber configuration complexity.

These results demonstrate UFO-3’s capability to simultaneously recover ac-
curate fiber orientations and meaningful tissue microstructure parameters from
single-shell data, approaching the quality of multi-shell reference methods.

3.3 Tractography reconstruction analysis

To evaluate the practical utility of fODF estimation in structural connectivity
mapping, we assess the tractography reconstruction performance of UFO-3.

Data. The Tractometer dataset [22] provides a single-volume simulation of a
real human brain with a low-angular resolution acquisition protocol (1 shell, 32
gradient directions), including ground truth tractography bundles.

Results. We perform a qualitative evaluation of tractography results using
UFO-3-derived fODFs compared to traditional single-shell approaches. For vi-
sualization, we focus on the brainstem projection system (BPS). Fig. 4a shows
tractography reconstructions from different methods compared to the ground
truth configuration. SS3T-CSD and CSD appear less sensitive to fiber curva-
ture, producing fewer streamlines in the right region and failing to capture di-
rectional changes. UFO-3 provides more voluminous streamline reconstruction
in most regions, which may result from (1) capturing high-curvature regions that
deterministic GT tracking could miss, and (2) mild over-smoothing due to the
convolutional architecture. It is important to note that even ground truth trac-
tography can be imperfect, as discussed in [22]. For quantitative comparison, we
compute bundle overlap rates following the standard Tractometer scoring pro-
tocol. As shown in Fig. 4b, UFO-3 achieves comparable overlap rates to other
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Fig. 4. Tractography evaluation on the Tractometer dataset. (a) Visualization
of the brainstem projection system (BPS) reconstructed using different methods com-
pared to the ground truth. (b) Bundle overlap rates for the methods. Values for UFO-3,
CSD, and SS3T-CSD are from our implementation, while SHD-TV and RT-ESD values
are from |[7].

single-shell methods, with SHD-TV and RT-ESD values cited from their original
reported results in [7].

4 Discussion

UFO-3 demonstrates the potential of combining biophysical modeling with un-
supervised learning for accurate fODF estimation from single-shell dAMRI. Our
experiments show that UFO-3 achieves comparable or superior performance to
existing methods while maintaining interpretability through its physics-based
design. The framework’s ability to simultaneously estimate microstructure pa-
rameters provides additional biological insights without requiring multi-shell ac-
quisitions.

While our U-Net architecture might appear conventional, it represents a de-
liberate choice balancing accuracy and efficiency. Since its introduction, U-Net
has proven remarkably effective across diverse medical imaging applications, with
its skip connections particularly valuable for preserving fine structural details in
fODF estimation. The 3 patch size similarly balances local context capture
with computational efficiency, enabling multi-batch inference while maintaining
spatial coherence.

A key advantage of UFO-3 is its subject-specific training approach, which
eliminates the need for large-scale training datasets and mitigates potential do-
main shift issues common in supervised learning methods. However, this design
choice necessitates that model parameters be optimized for each subject inde-
pendently. The computational time required for this step (approximately 30 min
per subject on a single NVIDIA RTX 3090 GPU) is a trade-off for achieving a
personalized model without the need for large, pre-existing training datasets.

4.1 Limitations and future directions

Our approach has several limitations. First, while our V' = 3072 spherical grid
effectively balances resolution and computational demands, lower resolutions
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caused unstable optimization due to poor spherical operator conditioning. Future
work could explore more efficient sampling strategies, maintaining stability with
fewer nodes. Second, UFO-3 currently handles single-shell acquisitions at b =
1000 s/mm? to match clinical settings. Extension to multi-shell or higher b-value
protocols would leverage richer diffusion characteristics.

While our validation is comprehensive within scope, testing across more di-
verse datasets would strengthen results. Specifically, validation on the DiSCo
dataset [25], with both microscopic (axon diameter, myelin) and macroscopic
(fiber trajectory) ground truth, would enable more thorough evaluation of ori-
entation accuracy and tissue parameter estimates. This would address con-
cerns regarding volumetric differences in tractography results compared to estab-
lished methods. Integration with advanced tractography algorithms could better
demonstrate the method’s utility for connectivity analysis.

4.2 Conclusion

We have presented UFO-3, an unsupervised framework that effectively com-
bines biophysical modeling with deep learning for fODF estimation. The method
achieves robust performance on single-shell data while maintaining interpretabil-
ity and computational efficiency. While there remain opportunities for improve-
ment, particularly in multi-tissue modeling and parameter stability, UFO-3 rep-
resents a promising step toward more practical and reliable fiber orientation
estimation for clinical applications.
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