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Abstract. Reliable out-of-distribution (OOD) detection is important
for safe deployment of deep learning models in fetal ultrasound amidst
heterogeneous image characteristics and clinical settings. OOD detection
relies on estimating a classification model’s uncertainty, which should in-
crease for OOD samples. While existing research has largely focused on
uncertainty quantification methods, this work investigates the impact of
the classification task itself. Through experiments with eight uncertainty
quantification methods across four classification tasks on the same image
dataset, we demonstrate that OOD detection performance significantly
varies with the task, and that the best task depends on the defined ID-
OOD criteria; specifically, whether the OOD sample is due to: i) an image
characteristic shift or ii) an anatomical feature shift. Furthermore, we re-
veal that superior OOD detection does not guarantee optimal abstained
prediction, underscoring the necessity to align task selection and un-
certainty strategies with the specific downstream application in medical
image analysis. Code: https://github.com/wong-ck/ood-fetal-us.

Keywords: OOD · uncertainty quantification · fetal ultrasound.

1 Introduction

Out-of-distribution (OOD) detection is crucial for deploying reliable deep learn-
ing models in medical image analysis. This is particularly needed in fetal ultra-
sound, which is ubiquitous in routine maternity check-ups, but also comes with
significant heterogeneity in image characteristics due to differences in operator
training or maternal Body Mass Index (BMI), and a diverse range of ultrasound
scanners. This variability in input image distribution directly impacts the perfor-
mance of deep learning models, underscoring the need for robust OOD detection
to identify distributional shifts of different kinds and ensure diagnostic accuracy.

https://github.com/wong-ck/ood-fetal-us
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OOD detection finds wide application in medical imaging [6,26]. For
image quality and domain shift detection, [9] attempted to detect distribution
shift for surveillance of deployed AI algorithms, and [15] developed calibration
technique to estimate performance of a trained model under domain shift. An-
other task is anatomical shift detection, e.g. identifying unseen pathologies or
abnormalities during inference. In chest X-ray analysis, [1] identified fracture
cases as OOD examples using a classifier trained to distinguish cardiomegaly
from pneumothorax. Similarly, in dermatology, [3] utilized images of unseen skin
diseases as OOD sets. In digital pathology, researchers have explored the detec-
tion of novel abnormalities as OOD samples [16,23]. Beyond pathology detection,
OOD methods are also used to extract clinically relevant frames from ultrasound
videos, identifying frames that deviate from expected anatomical content [17].

OOD detection can be formulated via uncertainty quantification
(UQ). There is a diverse landscape of UQ techniques applicable to medical imag-
ing [7,13,27], many focusing on image classification [10,22]. Here, OOD detection
relies on estimating the predictive uncertainty of a classifier for a given input
image, reflecting the model’s confidence in its prediction. Higher uncertainty
typically indicates a greater likelihood that the input image originates from a
distribution different from the training data, suggesting it is out-of-distribution.

While many easily-available UQ algorithms are based on how a particular
classifier views the data, being OOD is a natural property of the data itself. This
is important from the clinic’s point-of-view, where in fetal ultrasound we observe
both classical quality shifts such as blur and low resolution, or other shifts in
image characteristics such as hue or artifacts – but also anatomical shifts in
off-plane images. In the clinic, it is therefore important that OOD detection is
robust and consistent for different types of distribution shifts.

Contributions. We study eight common classifier-based UQ techniques for
OOD detection. To study robustness of OOD detection across types of distri-
bution shifts, we challenge the idea that the UQ techniques should be based on
the primary classifier of interest, which for this paper will be an anatomi-
cal plane classifier. As UQ base classifiers, we train three alternative models to
predict image meta-information found in the DICOM header, and study how
the resulting four models perform as a basis for the different UQ-methods, vali-
dated on OOD distribution for i) image characteristic distribution shifts, and ii)
anatomical shifts. Finally, we test how our primary classifier of interest performs
in an "abstained prediction" setting using the different OOD models.

We find that the choice of base classifier for the OOD detector has a large ef-
fect on OOD performance, and that the primary classifier is not always the best
choice. However, we also see that these results are surprisingly not indicative of
performance in "abstained prediction" for the primary classifier – where the UQ-
methods based on the primary classifier perform better than the competitors.
This shows that the choice of base classifiers matters for OOD detection, and
suggests that OOD detection and trustworthy classification are not always two
sides of the same coin. In particular, our results underscore that classical OOD
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detection performance is not always suitable for model selection if the down-
stream application – as is often relevant in the clinic – is abstained prediction.

2 Method

2.1 Uncertainty Quantification (UQ) Methods

Under a C classes classification setting, a classifier is trained to predict the
class label y ∈ {1 . . . C} given an input image x ∈ R2, with a predictive uncer-
tainty score u(x) that can be estimated using UQ-methods. OOD detection is
then achieved by thresholding: If u(x) > t, then x is flagged as OOD. Inspired
by [18], we evaluate eight UQ-methods that do not rely on a hold-out OOD test
set during training. We focus on the following, mainly deterministic, methods
considering their fast, non-iterative inference procedure:

As a Baseline, we trained a ResNet-50 model for the classification task and
calculated the entropy of the model’s predictive softmax probability as u(x).
Temperature Scaling [5] adds a calibration step to the softmax probability.

Two alternative methods augment the baseline model with an auxiliary pre-
diction head. Loss Prediction [8, 11, 25] trains this head to predict the loss
L(x), while Correctness Prediction [8,18] trains it to predict the probability
p(ŷ ̸= y|x) of an incorrect prediction, using the predicted values as u(x).

Meanwhile, two methods make use of the feature embedding space density.
With a trained classification model, Deterministic Uncertainty Quantifica-
tion (DUQ) [24] and Deep Deterministic Uncertainty (DDU) [19] work
by first obtaining feature embeddings of all training images, followed by learn-
ing a density estimator using these embeddings. To ensure the latent space is
well-regularized, DUQ adds a gradient penalty term in the loss function, while
DDU applies spectral normalization to the model weights. u(x) is then given by
one minus the estimated density of x in the feature embedding space.

Finally, we also evaluated two probabilistic methods given their popularity
in medical image analysis literature [13]. In these methods, multiple predictions
are obtained for a given x. For each prediction, MC-dropout [4,21] switches off
a random subset of the model activations, while Ensemble [12] uses a trained
model that is initialized differently. Here, we used a lightweight implementation
of ensemble [14], which involves training a single model with multiple randomly-
initialized heads. Entropy of these predictions are taken as u(x).

2.2 Dataset

We utilized a combination of two public and one private fetal ultrasound datasets.
The SONAI dataset is a private fetal ultrasound dataset including images

from four common fetal anatomical planes: abdomen, brain, femur, and thorax,
acquired using advanced ultrasound scanners. Additionally, each image is ac-
companied by metadata in the form of a DICOM header, which we utilized in
designing our classification tasks (see Sec. 2.3). This dataset includes images of
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other ‘generic’ fetal ultrasound planes, which we group into a separate bundle
named the SONAI (Other) dataset. This will be used as an OOD dataset.

The BCNatal dataset [2] also comprises images from the same four fetal
anatomical plane, acquired using advanced ultrasound scanners similar to those
used for the SONAI dataset. This dataset also includes images of other ‘generic’
ultrasound images, where we group into a separate bundle and refer to as the
BCNatal (Other) dataset, to be used as an OOD dataset.

The African dataset [20] comprises fetal ultrasound images of the same
four anatomical planes as the two other datasets, but acquired in resource-
constrained settings with less advanced ultrasound scanners. This results in im-
ages of lower quality compared to the two other datasets.

2.3 Classification tasks

Four distinct classification tasks were designed using the SONAI dataset, based
on the metadata accompanying each image or the anatomy shown.

Plane Classification assigns ultrasound images into four anatomical planes:
abdomen (n=1947), brain (n=3059), femur (n=1832), and thorax (n=2125).
This task is a core application in fetal ultrasound and serves as a primary in-
distribution task for our experiments. Scanner Classification identifies the
machine used to acquire each image, which can be GE Voluson S (n=3723), V830
(n=2282) or E10 (n=2958). DICOM Type Classification predicts image type,
which can be a single-region b-mode (n=6786), multi-region b-mode (n=1964),
or a color Doppler (n=213) ultrasound image. Finally, Maternal BMI Group
Classification predicts the BMI group of the pregnant subject undergoing the
ultrasound scan, i.e. underweight (BMI ≤ 18, n=2452), normal (BMI 19-24,
n=2260), overweight (BMI 25-29, n=2230), or obese (BMI ≥ 30, n=2021).

3 Experiments and Results

Following [18], we trained 160 classifier models for the four classification tasks
(see Sec. 2.3), using the eight UQ-methods (see Sec. 2.1) repeated with five
random seeds, i.e. we test both i) the influence of the classification task, and ii)
the UQ method independently. All models were based on a ResNet-50 backbone,
and trained for 100 epochs. Experiments were conducted on an AlmaLinux 8.7
server with NVIDIA RTX A6000 GPU. All datasets follow a 80:10:10 train-val-
test split. Statistical significance was tested using a multi-factor ANOVA model.

3.1 Classification accuracy drops as image characteristics change

Before assessing uncertainty quantification, we validate the accuracy of our UQ-
endowed classifiers when trained for our primary classification task: anatomical
plane classification. As the models are trained on the SONAI dataset, we expect
some distribution shift, and drop in accuracy from the SONAI to BCNatal test
sets, as the latter comes from a different site. We expect a further drop for the
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Fig. 1: Accuracy of the anatomical plane classifiers, trained using the eight UQ-
methods, in classifying anatomical planes across three test datasets.

African test set, where we also expect a drop in image quality due to a less
advanced scanner. Indeed, Fig. 1 shows a significant trend of accuracy dropping
from the SONAI, to BCNatal, and to the African test sets for all models.

This demonstrates the vulnerability of deep learning models to shifts in input
image distribution, highlighting the importance of reliable OOD detection meth-
ods. This also motivates our subsequent experiments to evaluate the effectiveness
of different OOD detection methods in identifying these input distribution shifts.

3.2 The effect of base classification task on OOD detection

We now investigate our main research question: How does the base classification
task affect the UQ-methods’ performance in OOD detection? We hypothesize
that the task would influence the learned feature representations of the model
and, consequently, their ability to identify OOD samples.

Moreover, we study our follow-up research question: Do "good" classification
tasks perform equally well at detecting different plausible distribution shifts? To
answer this, we study how the classification task affects our ability to detect two
different families of distribution shifts that occur naturally in fetal ultrasound
screening: Shift in image characteristics due to different (quality) scanners, and
anatomical shift, which occurs when operators search for a given anatomical
plane or feed an incorrect image to the model.

All models below were trained on the SONAI training set for each of the four
classification tasks defined in Sec. 2.3.

OOD 1: Shift in image characteristics. Fig. 2 shows how ID vs OOD
classification performance, quantified via AUROC, distributes across the eight
UQ-methods when built on the four different base classifiers.

First, as expected, we see a significantly higher OOD classification perfor-
mance for the African dataset than for BCNatal, confirming that most methods
can pick up on the expected increased distribution shift for the African dataset.

Second, we observe that for both distribution shifts, and for almost every
UQ-method evaluated, models trained on the scanner classification task consis-
tently and significantly outperformed models trained on the other three tasks.
This suggests that, in the presence of a strong image quality shift, the scan-
ner classification task led to feature representations that were remarkably more
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Fig. 2: Image characteristics shift: OOD detection performance across UQ-
methods, for the four classification tasks. The OOD datasets (BCNatal, African)
constitute a shift in image characteristics (image quality, scanner characteristics).

effective at distinguishing OOD data. Notably, models trained on the plane clas-
sification task, which represents our primary classification task of interest in the
clinic, were almost consistently not the best performing OOD detectors. This is
particularly interesting, as the primary classifier would normally be the choice
of base classifier for OOD detection.

OOD 2: Anatomical shift. Fig. 3 shows how ID vs OOD classification per-
formance, quantified via AUROC, distributes across the eight UQ-methods built
on the four base classifiers. We consider two different datasets with anatomical
shift from the SONAI dataset; namely SONAI (Other) and BCNatal (Other).

This experiment yields a different picture from our first set of experiments:
For detecting SONAI (Others), the UQ-methods built on the primary plane
classification task perform best by far. This base classifier is also competitive on
BCNatal (Other), although the scanner classifier is, again, slightly better.

3.3 Abstained Prediction

To further investigate the practical implications of task-dependent uncertainty
quantification, we explored the performance of our primary (anatomical plane)
classifier, using the different UQ-models in an abstained prediction scenario.
Abstained prediction is a more stringent evaluation of uncertainty estimation
than OOD detection alone. Here, the model abstains from making a prediction
when u(x) > τ for an input image x exceeds a predefined τ , and accuracy is
evaluated based on the remaining, non-abstained samples.

We first utilized the models trained for the plane classification task with
each of the eight UQ-methods. For each plane classification model, we varied
the uncertainty threshold τ , and calculated the accuracy of the model only on
the samples for which it did not abstain (i.e., u(x) ≤ τ). We repeated this
process for a range of thresholds τ to generate an accuracy coverage curve. Next,
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Fig. 3: Anatomical feature shift: OOD detection performance across UQ-
methods for each of the four classification tasks using the OOD datasets (SONAI
(Others), BCNatal (Others)).
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Fig. 4: Performance of "plane classification" with abstained prediction, across
base classifier for UQ-methods as well as image characteristic distribution shifts.

we repeated the experiment with u(x) generated by the base models trained
for scanner type, dicom type, and bmi group classification instead. Following
the convention in [18], we evaluated the abstained prediction performance by
calculating the area under the accuracy coverage curve (AUAC).

We had expected that models exhibiting strong OOD detection performance
would also excel in abstained prediction. However, Fig. 4 shows that models
trained for scanner classification, which demonstrated superior OOD detection
capabilities (especially for shifts in image characteristics), performed worse in
abstained prediction for the plane classification task than UQ-models using plane
classification as a base model: On both image characteristic shifts, uncertainty
estimated with plane classification models generally leads to higher AUAC.
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4 Discussion and conclusion

Our first result is that the performance in OOD of a UQ-model depends
heavily both the UQ-method’s base classification task, and the OOD
distribution shift. Sec. 3.2 suggests that the base classification task plays a
critical role in shaping the feature space utilized by the UQ methods. Different
tasks lead to distinct learned feature spaces, ultimately impacting OOD detec-
tion. For image characteristic shifts (BCNatal and African datasets as OOD),
scanner classification models excelled. This task trains models to be sensitive to
texture and noise features directly affected by image quality degradation, making
them ideal for detecting this type of OOD. For most anatomical shifts (SONAI
(Other) and BCNatal (Other) datasets as OOD), on the other hand, plane classi-
fication models performed best. Training for anatomical plane recognition makes
these models sensitive to broad anatomical differences, which is needed to iden-
tify images from entirely different anatomies as OOD. These further reinforce
our central finding: OOD detection performance is not solely a function of the
chosen uncertainty method, but is also determined by the interplay between the
classification task and the specific ID-OOD shift.

Interestingly, scanner classification models also performed well in detecting
anatomical shifts with BCNatal (Other) dataset as OOD. We hypothesize that
this can be explained by considering the acquisition context of the BCNatal
(Other) dataset. Some of the images in the BCNatal (Other) dataset were ac-
quired with different ultrasound probes or acquisition protocols. This leads to
detectable differences in image characteristics related to acquisition settings,
which the scanner classification models are inherently sensitive to.

Our second important result is that the best OOD performance does
not imply the best abstinence performance. Our investigation into ab-
stained prediction performance in Sec. 3.3 revealed that optimal OOD detection
performance does not necessarily translate to optimal performance for avoid-
ing erroneous predictions in our clinical task of interest. Scanner classification
models, which consistently demonstrated superior OOD detection across dif-
ferent ID-OOD shifts, actually underperformed in abstained prediction for our
primary plane classification task compared to models trained directly for plane
classification. This could reflect that a different datasets do not necessarily imply
classifier failure. Models trained directly for plane classification, while potentially
less sensitive to broader OOD shifts, appear to develop a more refined under-
standing of uncertainty within the plane classification task, enabling them to
abstain more effectively while maintaining high accuracy on confident samples.

Limitations. First, our choice of UQ methods is limited. We have chosen to
focus on UQ-methods that are easily available and widely used, while also being
classifier-based to enable consistent experiments. Nevertheless, we hypothesize
that our main point stands: There is no universal UQ method to rule them all.

Second, while OOD detection is usually approached using epistemic UQ, we
include methods that also measure aleatoric uncertainty. We argue, however,
that this makes sense for our applications: While anatomical shifts and image
characteristic shifts like artifacts and shadows are clearly epistemic, other image
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characteristic shifts, like blur or resolution, could be considered aleatoric. We
thus find it appropriate also to include UQ methods with an aleatoric component.

Conclusion. Our findings have significant implications for the practical ap-
plication and validation of uncertainty quantification. The choice of the most
effective UQ-model is not universal and must be guided by the specific down-
stream application. For data shift monitoring systems, where the goal is to de-
tect when the input data distribution has changed significantly enough to trigger
model retraining, OOD detection performance should be prioritized. For clinical
referral systems, where the aim is to automate the processing of confident cases
while referring uncertain cases to clinicians, abstinence performance becomes the
more critical metric for minimizing both errors in automated cases and clinician
workload in abstained cases.
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