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Abstract. Medical image registration relies on the overlapping regions
between two images to calculate transformation parameters, thus pos-
ing a significant challenge for image registration with limited overlap. To
overcome this challenge, this study proposes an image expansion solution
by generating more overlapping regions to improve the registration per-
formance between images with minimal overlap. As this is the first study
to expand images for registration, we trained a generative network from
scratch to avoid chaotic structures in the expanded regions. We proposed
the Sequential Structure-Preserve Expansion (SSPE) framework to re-
alize the expansion-based registration, where each image is present by
a sliding scope and its expansion can be observed by sliding the scope.
When given the current image and a sliding step, SSPE utilizes a gener-
ative network to predict the scope content of the next sliding position.
Specially, we also bring in the gradient matching to maintain anatomical
structures in the predicted scope. The performance of SSPE is evalu-
ated on a public dataset of total-body CT images, which proves that our
SSPE is significantly efficient in solving the registration difficulties caused
by insufficient overlapping regions. The codes of our framework are made
available at https://github.com/YongshengPan /Structure-Preserve-Expansion,
and we will also publish software for user-friendly access and testing.
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1 Introduction

Medical image registration has widespread applications in medical imaging |3,
11, 8], especially in fields such as radiotherapy planning, disease diagnosis, and
research [14]. It aligns two or more images so that they can be compared and
analyzed within the same coordinate system [23]. Most current registration al-
gorithms rely on overlapping regions between two images to calculate trans-
formation parameters (such as translation, rotation, etc.) [22, 1]. Some existing
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literature and benchmarks have verified that at least 30% overlap is required to
maintain measurable registration performance [4, 13, 25]. For image registration
with limited overlap, it often poses a significant challenge. This often occurs
when capturing images from different parts of the body, even for the same indi-
vidual. As in Fig. 1, when diagnosing cardiocerebrovascular diseases, the limited
apertures of computed tomography (CT)[10,24] may only allow capture of the
brain region and the chest region separately. The minimal overlap between the
brain and chest regions significantly increases the difficulty of registration.

In this study, inspired by successive applications in the generation of medi-
cal images [15,17,16, 18], we propose an image expansion solution to overcome
this challenge, which aims to generate more overlapping regions by expanding
partial-scope images (as illustrated in Fig. 1), thus improving the registration
performance. Although image expansion techniques have already been developed
in natural image processing [20], they often fail in medical images. The typical
characteristic of these natural image expansion applications is the chaotic struc-
ture in the expanded regions, which hinders the good quality of registration.
Therefore, we have to develop an image expansion model from scratch for med-
ical images to ensure that the expanded images not only have larger overlapped
regions in space but also preserve the real anatomical structures.

Based on previous experiences with natural image expansion, we proposed the
Sequential Structure-Preserve Expansion (SSPE) framework to realize expansion-
based registration by image-to-image translation. In this framework, we assume
that each image is present by a slidable scope, and its expansion can be ob-
served by sliding the scope. When given the current image and a sliding step,
SSPE utilizes a generative network to predict the scope content of the next
sliding position. Specially, to maintain anatomical structures in the predicted
scope, a structure maintain constraint is designed to encourage the generative
network to focus more on anatomical structures. The performance of SSPE is
evaluated on a public dataset of total-body CT images, where the experimental
results prove that our SSPE is significantly efficient in solving the registration
difficulties caused by insufficient overlapping regions.

2 Method

2.1 Problem Formulation

A total-body volume X could be separated as a sequence of multiple volume
parts with a slide scope with center 6,

X ={Xp;0=1,2,---}, (1)

The progressive expansion from a given Xy is visualized in Fig. 2. Let G5 be a
progressive model that can estimate the next scope Xy41 from current scope Xy
of an interval distance § from Xy, namely,

Xog45 = G5(Xp). (2)
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Fig. 1. Problem claim and our solution. Failed registration (left) between two parts
with minimal overlap and successful registration based on expanding overlap region.

Then, any other scope Xy, can be represented by gradually applying Gs to the
initial scope Xy, if 01 — 0y = kd (k € N),

Xo, = Ga(Xoy—5) = Gs(Gs(Xo,_25)) = - - = Ca(Xa). 3)

2.2 Network Structure

We suppose G; be the generative network in a generative adversarial network
(GAN) [9] that is trained with the assistance of a concurrently trained discrim-
inator network. As this is the first study to expand medical images, we make
a full comparison of different backbones, including ResUNet [6], TransUNet [2],
and TransResUNet [19]. These networks have a base feature dimension of 16 and
a downsampling depth of 4.

ResUNet Combining the strengths of U-Net and ResNet, ResUNet offers im-
proved gradient flow and feature learning through residual connections, which
help mitigate the vanishing gradient problem and enhance training stability [12].
Its symmetric encoder-decoder structure with skip connections preserves spatial
details, making it ideal for tasks like medical image segmentation.

TransUNet In image extrapolation, the Transformer [21] enhances the model’s
ability to capture long-range dependencies and global contextual relationship
across an image. By self-attention, it can focus on distant regions of the image,
helping generate coherent and consistent structures during extrapolation. This
is useful for maintaining anatomical consistency in medical imaging tasks, where
capturing complex spatial relationships is critical for accurate tissue generation.
Integrating the Transformer blocks within the U-Net/ResUNet structure may
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Sequential Expansion

Fig. 2. Framework to sequentially expand medical images for registration with
minimal-overlap regions.

enhance the model’s ability to capture long-range dependencies, which are de-
noted TransUNet/TransResUNet.

Adversarial Network The adversarial network is a sequence of convolutional
blocks, progressively increasing the feature dimensions while reducing spatial
resolution. The network starts with a base feature dimension of 16 and a down-
sampling depth of 4. A reflective padding strategy is used to minimize boundary
artifacts, and the final output is a single-channel volumetric map rather than a
single scalar value, allowing for a more detailed and localized comparison with
the ground truth. The discriminator is optimized using the Adam optimizer with
a learning rate of 1 x 1073,

2.3 Training

To reduce memory consumption, we slide a scope of 96 x 256 x 256 to extract a
sequence of volume parts from each CT volume. To ensure that the model can
access comprehensive data while preventing boundary overflow after shifting by a
gap, the starting coordinate 6 is randomly selected from the range [0, D —96—4),
where D is the tomogram count of this volume. The first volume part is defined
as Xp = X[0 —48 : 04 48,0 : 256,0 : 256], by sliding a distance of § = 46, the
second volume part is obtained as Xgi15 = X[0 —2: 0+ 94,0 : 256,0 : 256]. The
first volume part Xy is fed into the generative network Gg, producing the output
X9+5 through model training. Subsequently, both X9+5 and Xy, are fed into
the discriminator D for further processing and evaluation.

The model is trained via a combination of reconstruction loss and adversarial
loss. The reconstruction loss optimizes for coarse image agreement and is imple-
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mented as an 1 loss [5] imposed on the full output of Gs. The full equation is
below:

Lree = E(xy Xg15)~pana X0+ — Gs(Xo)|l1] (4)

For the adversarial loss, which refines the coarse prediction, we use the equation
below:

1
Ladv = E(xy,Xg1.5)~paaa | 5 (IP(Gs(X0)) = L1 + [D(Xo15)]l1) (5)

In addition to the above losses, we also introduce a gradient matching loss [7]
to improve the fine-grained alignment of feature representations between the
generator’s output and the ground truth. This loss encourages the generator to
produce outputs whose gradient maps match those of the real data. The gradient
matching loss is calculated as:

Lym = Earpaua [[1fa(X0) — fa(C5(Xo16)) 1] (6)

where fa(:) represents the gradient map extracted from x by a Sobel operator.
The total loss for training the generative network is:

‘Ctotal = ACrec + £adv + Egm (7>

As Xy and Xy, has an overlap in the middle, we assign a different weight A = 4
for non-overlapping portions, to draw the model’s attention towards generating
the non-overlapping sections. We denote the models with gradient matching loss
and different weight AResGAN, ATransGAN, and ATransResGAN to distinguish
with the original models ResGAN, TransGAN, TransResGAN.

3 Experiment

Dataset. We download the Healthy-Total-Body-CTs dataset from The Cancer
Imaging Archive (T'CIA) for our model training and evaluation. This dataset
provides low-dose whole-body CT images from 30 healthy adults (age > 18)
imaged on the uEXPLORER total-body PET/CT system at UC Davis. Fifteen
participants were scanned at three timepoints (0, 90, and 180 minutes post-
PET tracer injection), and the remaining 15 at six timepoints (adding 360, 540,
and 720 minutes). CT scans at 90 minutes used 140 kVp and 50 mAs, while
other timepoints used 5 mAs. Notably, CT images were reconstructed into a
512 x 512 x 828 image matrix with 0.9766 x 0.9766 x 2.344mm?> voxel size.
Access requires a TCIA Restricted License Agreement due to potential risks of
facial reconstruction. We randomly select 120 subjects for training models and
the rest remain for evaluation.

Our model is implemented in Python with PyTorch and CUDA12. The gen-
erative network and adversarial network are trained jointly using the Adam
optimizer with a learning rate of 10~2. During training, we randomly crop a vol-
ume part of each CT scan and a slide scope with a down distance of 46 layers,
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ensuring that they do not exceed the boundaries. The training was conducted
on an NVIDIA 4070 Ti SUPER GPU, with 1400 training iterations for all six
models. The input size is (96, 256, 256), with a batch size of 1 and a memory
requirement of 15.55 GB.

Evaluation Metrics. We evaluate the performance of our 3D thoracic CT ex-
trapolation models using four key metrics: mean absolute error (MAE), peak
signal-to-noise ratio (PSNR), root mean square error (RMSE), and structural
similarity index (SSIM). MAE quantifies the average absolute pixel-wise dif-
ference, reflecting overall accuracy. PSNR assesses image fidelity by comparing
signal strength to noise, with higher values indicating better quality. RMSE
emphasizes larger errors by computing the square root of the mean squared
differences. SSIM measures structural and perceptual similarity to the ground
truth, with values closer to 1 indicating higher visual consistency. Together, these
metrics provide a comprehensive evaluation of both quantitative accuracy and
perceptual quality.

4 Result Analysis

As we aim to achieve registration among medical images with a minimal-overlap
region via image expansion, our result analysis includes the effect of image ex-
pansion and minimal-overlap registration.

4.1 Image Expansion

The performance of six models for 3D CT expansion is compared in Table 1,
where the metrics are reported as mean + standard deviation. Three conclu-
sions can be drawn from this table. First, ResGAN, TransGAN, and TransRes-
GAN achieve similar metrics while AResGAN, ATransGAN, and ATransResGAN
achieve similar metrics. This suggests that structure of the generative network
is not a major impact factor. Second, adding gradient matching loss and assign-
ing different weights to the overlap and non-overlap partials leads to an obvious
discrepancy, demonstrating that adding gradient matching loss and assigning a
different weights can help preserve the tissue structure and draw the model’s
attention towards generating the non-overlapping sections. Third, AResGAN
achieves the lowest MAE (4.13 £ 2.09) and RMSE (8.88 £ 3.83), with a high
SSIM (0.88 £ 0.04), while ATransGAN records the highest PSNR (30.19 £ 4.70),
suggesting that a generative network with more complex structures cannot be
beneficial to the generated results.

Fig. 3 presents a qualitative comparison of six models for 3D CT expansion,
showcasing sagittal and coronal views of the chest region. The "GT" column
displays the ground truth (complete CT scan), while the other columns show
the results of applying ResGAN, TransGAN, TransResGAN and AResGAN,
ATransGAN, A\TransResGAN for four successive expansions. Two observations
can be seen in Fig. 3. First, the volumes generated by ResGAN, TransGAN,
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Table 1. Performance comparison of all models. All scores are reported as mean +

standard deviation.

Model MAE | PSNR T RMSE | SSIM +

ResGAN 823 + 8.03  26.87 £ 5.68 1450 + 11.09  0.81 £ 0.11
TransGAN 774 4+ 809  27.36 £ 588  14.07 £ 11.59  0.82 + 0.12
TransResGAN  8.01 & 7.69  26.77 + 5.31  14.42 + 1091  0.81 + 0.11
AResGAN 4.13 £2.09 30.18 £ 452  8.88 +£3.83  0.88 + 0.04
ATransGAN 427 +£227 3019 £470 896 +3.97  0.88 £ 0.04
ATransResGAN  4.76 +£2.26  29.57 £ 4.61  9.56 £ 4.05  0.87 + 0.04

GT ResGAN TransGAN ResTransGAN AResGAN ATransResGAN

ATransGAN

Fig. 3. Comparison of images expanded by six generative models. The top and bottom
rows are the sagittal and coronal views of the same individual, with Ground Truth (GT)
on the left. Our specialized AResGAN, ATransGAN, and ATransResGAN generate
images with tissue details closer to GT than ResGAN, TransGAN, TransResGAN,
confirming its superiority.

TransResGAN without gradient matching are more blurred than those gener-
ated by AResGAN, ATransGAN, ATransResGAN, again demonstrating the abil-
ity of gradient matching to preserve tissue structure. Second, as the number of
expansion iterations increases, distortions also accumulate. AResGAN appears
to preserve the most realistic structures. This is reasonable, as the input at each
iteration is the output of the previous one, leading to residual accumulation.

4.2 Minimal-Overlap Registration

As described in the above subsection, our specialized AResGAN, ATransGAN,
and ATransResGAN achieved similar performance in image expansion, where
AResGAN shows a little better performance. Therefore, we select AResGAN
as a representative to inspect the registration ability of image expansion. We
evaluate its performance under two different conditions that frequently appear
in medical image analysis, including (1) same person registration, (2) different
person registration. The results of these registration conditions are illustrated
in Fig. 4, where we consider only the linear registration for simplification and
stability. The following conclusions can be observed from Fig. 4.
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(1) Based on increased overlap area from image expansion, all these four regis-
tration conditions could be well-achieved while failures are reduced without
increased overlap. This demonstrates the correctness and effectiveness of the
technique line, image expansion for minimal-overlap registration.

(2) The images achieved excellent alignment with imperceptible position or ro-
tation shift for same person registration, but remained a little perceptible
shift for different person registration. This is mainly caused by the individual
difference that cannot be overcome by linear registration. Individual differ-
ence regions are almost evenly distributed in symmetric directions, which
suggests that different individuals are well aligned by their centers.

(3) Besides the sample shown in Fig. 4, we also tested on some other subjects
and have similar observations as above. This demonstrates the robustness
and generalizability of our approach in handling diverse imaging scenarios.

Failed Registration without Expansion Successful Registration with Expansion

Same Person

Different Person

Fig. 4. Failed registration(left) and successful registration after image expansion
(right).

5 Conclusion

In this study, we proposed an image expansion solution, Sequential Structure-
Preserve Expansion (SSPE), to overcome the challenge of registration with min-
imal overlap. It generated more overlapping regions by expanding the partial-
scope images with minimal overlap regions, thus improving the registration per-
formance. We developed and trained image expansion models from scratch for
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medical images preserving real anatomical structures to ensure that the ex-
panded images provide good quality for registration. Our future work will expand
to multiple modalities and publish user-friendly software.
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