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Abstract. Anatomical landmarks are used for clinical measurements,
screening, and to guide treatment decisions. In this work, we explore
the clinical application of landmark-based angle measurements, with a
particular aim of screening infants for Developmental Dysplasia of the
Hip (DDH).

Our automated machine method uses a simple UNet++ architecture.
The network is used to predict landmark heatmaps, which represent
landmark localisation certainty. A Monte Carlo-like approach is then
used to approximate an angle distribution from landmark heatmaps. We
propose a confidence metric from the derived angle distributions.
Multiple clinician annotations are combined and compared to the ma-
chine predictions. The machine-generated angle distribution is verified
by confirming the correlation of the mean angle values and standard de-
viations per scan, between the multiple clinicians and the machine. The
confidence scores correlate for the clinicians combined and the machine.
The confidence of the machine strongly correlates with the sum of the
confidence scores given by clinicians for each scan.

This work is the first to present a method for estimating the distribution
of clinically relevant angles from predicted landmarks. Landmark-based
angle confidence can establish robust methods and increase clinician trust
in using automated or computer-aided methods.
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tribution - Ultrasound

1 Background

Clinical Relevance. Orthopaedic diseases such as Developmental Dysplasia of
the Hip (DDH), Osteoarthritis (OAI), Adolescent Idiopathic Scoliosis (AIS) and
knee deformities or instability, all require anatomical landmarks to be located
in order to calculate diagnostic or treatment angles. Automated methods show
reasonable performance in predicting angles when compared to ground truth
annotations from one reviewer[10,1,7,12].

Infant DDH is a condition in which the femoral head is not aligned with
the acetabular socket. Early diagnosis is critical, as late diagnosis requires com-
plex surgical procedures and prolonged hospital stays. Ultrasound (US) imag-
ing is generally used for screening due to its accessibility. However, US images
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are subjective and interpretation can be difficult [14]. The method pioneered
by Dr. Reinhard Graf [4] assesses DDH severity. The Graf classification is deter-
mined from an anatomical angle («), derived from manual landmark annotations
(Fig. 1). Patients are coarsely screened as normal (o>60°) or abnormal (a<60°).

Previous methods for automating « angle measurements report within a rea-
sonable range of clinical annotations (2.2°-3.8° of the ground truth « angle) [5, 2,
3]. None of these methods incorporates a probability distribution or a confidence
measure in the reported angle measurement. This is needed to evaluate the angle
range and to propose a confidence measure of the predicted angle.

Angle Estimation. Work to-date in Orthopaedics has calculated angles from
the centre of predicted anatomical landmark annotations. A few methods have
analysed the absolute difference of the machine predicted angles compared to
clinicians [5,7,12]. These papers report the mean and standard deviation of the
absolute difference in predicted angle across the dataset, but none have reported
an angle distribution or angle confidence for each scan. Estimating an angle
distribution can convey the probability of angle predictions. This can improve
the robustness and trustworthiness of automated methods to promote clinical
deployment by notifying when a machine-predicted angle has low confidence.

Landmark Localisation. Landmark ‘heatmaps’ are increasingly used to rep-
resent automated landmark predictions [9, 3,2,17]. Landmark ‘heatmaps’ allow
for uncertainty in landmark placement to be quantified and visualised. Uncer-
tainty metrics, such as the Expected Radial Error (ERE) [9], can be used to
quantify the level of confidence in an individual landmark placement. Annota-
tions are known to vary between clinicians (inter-rater variability). Landmark
uncertainty accounts for inter—clinician variability in landmark placement [9, 15].
This work leverages landmark prediction uncertainty and extends this to
estimate and validate an angle distribution that reflects inter—rater variability.
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Fig. 1. The Graf Angle Calculation. Left: normal (o> 60°); Right: abnormal (a<60°).
Landmarks are used to calculate the Graf a angle: ilium points (L1, green and L2,
blue), turning point (L3, yellow), lower limb point (L4, orange). The lines connect the
landmarks to create the baseline (blue) and the bony roof line (purple).
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Contributions

a. Estimate landmark-based angle distributions,

b. Validate the angle distribution method for machine-based predictions against
multiple clinicians,

c. Assess the inter—rater angle variability for DDH which, in turn, informs the
achievable precision of machine angle predictions,

d. Propose a confidence measure from the angle distribution and assess its
correlation with clinician confidence.

2 Methods

2.1 Datasets

Main Dataset. A total of 1,107 US scans were acquired from Alder Hey Chil-
dren’s Hospital. The pixel size is 0.07x0.07 mm. This will be referred to as the
Main Dataset. Landmarks were placed at four key anatomical points. The land-
marks are used for the Graf a calculation (Fig. 1). Annotations in the Main
Dataset were reviewed and confirmed by two additional expert clinicians. These
annotations are referred to as the Reference Expert.

Data Subset. From the Main Dataset, 70 images were selected randomly. All
images in this subset were annotated by 10 clinicians (n=700 annotations total).
The 10 clinicians consisted of 5 Experts (consultants/attending) and 5 Non-
Experts (registrar/residents). This will be referred to as the Data Subset.

Clinician Confidence. Clinicians were asked to give a score for their confidence
in landmark placement for each scan. This score was from 1-5, with 1 meaning
low confidence and 5 meaning high confidence. The sum of confidence across
clinicians was used as a measure of clinician confidence for each scan.

Clinical Aggregated Landmarks. Post-processing was applied to the 10 Clin-
ician annotations. We assumed that if we asked the clinician to place the same
landmark multiple times, each precise placement would vary. To model this, the
centre point of each landmark was used as the centre of a Gaussian distribution
(o0=1). This represents the probability of the location of each landmark. We take
a similar method for automated landmark generation (discussed in Section 2.2).

An aggregated heatmap of all 10 clinicians was generated by taking the sum
of heatmaps in each channel across all annotations. The sum of the Gaussian
heatmaps, for each landmark distribution, was aggregated and then standardised
[0, 1] for comparisons with the machine method (see Figure 2). This is referred
to as the CLINICIAN AGGREGATED LANDMARK DISTRIBUTION (CALD). This
allows us to create a ‘heatmap’ that represents a probability distribution of the
location of each landmark, illustrating the extent to which the reviewers agree. A
wider spread of a landmark heatmap corresponds to weaker agreement, whereas
a tight spread and bright colour correspond to stronger clinician agreement.
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Fig. 2. Annotations and the Clinician Aggregated Landmark Distribution (CALD).
The left shows the combined heatmap from the sum of all 10 clinician Gaussian dis-
tributions (0=1). The right shows the landmarks given by all 10 clinician annotations
separately. Each side shows the entire image, with a section outlined in red dashed
lines. The larger boxes outline a zoomed-in section.

Compliance with ethical standards. The Main Dataset was retrospectively
collected from images taken during routine screening at Alder Hey Children’s
Hospital. A Philips EP1Q5G (L12-5 linear probe) US machine was used. Data
was anonymised and stored securely in the Nuffield Department of Orthopaedics,
Rheumatology and Musculoskeletal Sciences (NDORMS). The study was ap-
proved by the required National Health Services (NHS) Research Authorities
and Oxford University. Predictive models are run using the Advanced Research
Computing (ARC)[13].

2.2 Machine Landmark Predictions

The network input was an US image. A Gaussian heatmap (c=1, scikit-image
filter[16]) was output for each landmark for training. The output had 4 chan-
nels, one landmark per channel. This creates a per-pixel probability of the land-
mark location, referred to as a ‘heatmap’. To exclude predictions near zero, any
value below 0.05 in the heatmap was replaced with zero and normalised to [0, 1].

Additional threshold post-processing retained a percentile of the total proba-
bility and set anything outside that percentile to zero. Although multiple thresh-
olds were looked at, only the 91°¢ percentile threshold is reported here. Due to
the number of pixels that represent a landmark heatmap, this is close to 100%.
Finally, heatmaps resulted from the postprocessing are rescaled proportionally
to values in [0, 1].

All images were padded and resized to 512 x 352 in the data loader. The
augmentation of images was done with speckle noise (factor<2), intensity shift
(factor<1.0), scaling (factor<0.9), and translation (£<0.1 percentage of pixels,
y<0.1 percentage of pixels). Three augmentations were randomly selected and
applied to each image during data loading (imgaug [8]). A UNet++ [6] with a
ResNet34 encoder was pre-trained on ImageNet data using PyTorch [11]. The
decoder had five layers (256, 256, 256, 128, 64) each layer included batch nor-
malisation, followed by a ReLU activation. Attention in the decoder was applied
with Spatial and Channel ‘Squeeze and Excitation Blocks’. The network was
implemented using Segmentation Models Pytorch [6]. A spatial softmax func-
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Fig. 3. Monte Carlo Angle Estimation. The right and left sections of the figure show
examples of the « distributions for two unique patients. For each, an enlarged section
of the US scan with the machine-generated heatmaps. The associated a distribution is
plotted for the resulting angles. All unique Expert mean « values are shown as vertical
lines (green dashed for Non-Experts, green solid for Experts and black for the Reference
Ezpert). A black dashed line illustrates the Graf decision boundary for abnormal vs.
normal (60°). The grey area illustrates the clinician’s mean-based confidence interval
(see Section 3). The mean, standard deviation (std) and confidence (conf) are reported.

tion was applied to each channel for a probability-like distribution. The Negative
Log Likelihood (NLL) loss function was used with L2 regularisation to optimise
the model (batch size 6, epochs 20, and learning rate 0.005). The Main Dataset
was split into training, validation and testing (70%:15%:15%). The class-balance
was evenly distributed across all data splits (60.3% normal and 30.7% abnormal).
The machine test set includes the same 70 scans as in the Data Subset.

2.3 Monte Carlo Angle Estimate

A Monte Carlo-like simulation was used to generate the angle probability distri-
bution (10,000 iterations). In each iteration, a point was randomly selected from
each landmark heatmap and then used to calculate a. The frequency of the «
angles over all iterations was calculated. These values were binned (b=100) by
« value to generate a (rescaled) histogram. The histogram represents the prob-
ability distribution of the o angles for each patient. This was used to calculate
the angle probability distributions for CALD and machine heatmaps.

3 Evaluation

Mean and Standard Deviation. For each patient, the mean and standard
deviation are calculated for both the CALD and the machine. A scatter plot is
used to evaluate the correlation between the two. The absolute difference in « is
measured between Reference Expert and the machine prediction. This is averaged
for all patients, yielding an average absolute « difference. The average absolute
« difference is calculated as well between the Reference Expert and the CALD.
The Pearsons Correlation Coefficient (PCC) is reported for all comparisons.
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Fig. 4. Quantitative Results. The mean « and standard deviation are plotted for each
patient. Left: comparison of the mean from the machine and the CALD. Right: com-
parison of the standard deviation of the machine and the CALD. All units are in « (°).
The line of best fit is plotted for each graph. PCC are reported on each scatter plot.

Confidence Measures. The mean of the average absolute « difference (see
above, Mean and Standard Deviation) between the Reference Expert and the
CALD is used as a lower and upper bound around the mean. This is called
the clinician mean-based interval. The area of the « distribution in this interval
is defined as the confidence. The confidence is calculated for each patient for
both: the machine and the CALD « distributions. This machine confidence,
calculated from the clinician’s mean-based bound, is compared to the sum of all
of the clinician’s confidence scores for each scan.

Similarly, the decision support confidence interval is generated using the Graf
boundary. The area is calculated where the patient is normal («>60°). This
represents how confidently the a lies on the normal side of the decision boundary.

4 Results

Monte Carlo Angle Estimation. Fig. 3 shows the output angle distribu-
tion for two different patients. It shows an example where one patient has a
larger landmark spread visually than another. As expected the wider spread in
landmarks results in a wider a probability distribution. This is reflected in the
standard deviations and confidence values reported.

Mean and Standard Deviation. The average absolute « difference calculated
between the CALD and the Reference Expert is 5.58°. When compared to the
Reference Expert, the machine has a slightly lower « difference (3.76°).

The mean « for each patient predicted by the machine and the CALD are
strongly correlated (r=0.90). The standard deviation of the machine and the
CALD has a weak correlation (r=0.53). This is shown in Fig. 4.

Confidence Measures. There is a weak correlation (r=0.52, left of Fig. 5)
between the machine confidence and the CALD confidence when using the clin-
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Fig. 5. Confidence. Left: the clinician mean-based Machine confidence and CALD confi-
dence. Centre: the sum of the clinician confidence vs. the clinician mean-based machine
confidence. Right: Graf decision boundary, Machine confidence and CALD confidence.

ician mean-based interval. There are three distinct outliers, where the machine
predicts a confidence < 0.1%. When examining the outliers, we see the landmark
heatmaps overlap and are all extreme cases (severe dislocation/low «, Fig. 6).

There is a good correlation (r=0.7, centre of Fig. 5) between the Machine
confidence predicted using the clinician mean-based interval and the reported
clinician combined score. Outliers for the machine confidence in this plot (Fig. 5,
left) are the same as the outliers identified in Fig. 6. A strong correlation exists
(r=0.92, right of Fig. 5) between CALD confidence and machine confidence using
the clinical decision boundary threshold (Fig. 6, interval visual).

5 Discussion and Conclusions

This work successfully leveraged landmark uncertainty to create a method for
predicting angle probability uncertainty maps. This is illustrated in Fig. 3. This
method is validated by the strong correlation in the mean o« predicted by the
CALD and the machine (r=0.9, Fig 4). The weaker correlation in standard devi-
ation could be caused by the outliers consistent across all evaluation metrics. In
Fig. 6 we see a large standard deviation. This is likely caused by the heatmaps of
the landmarks overlapping (L1 and L2, Fig. 1), which results in a large variation
of angles. Outliers with large distribution could have been caused by the class
split available, or the visual heterogeneity within the abnormal class.

The « difference of the Reference Ezpert, compared to the o CALD, was
5.58° which suggests large inter—rater variability for DDH (see Section 4). This
work is the first to report the variation across 10 clinicians and therefore helps
to define a reference for the achievable machine precision needed for this task.
The average absolute a difference in the machine predictions and the Reference
Ezpert was smaller than the CALD (3.78°). This is likely because the machine
was trained by the Reference Expert. Current methods in the literature report
an average absolute « difference for the Graf method (2.2-3.8°) [5, 3], which are
similar to our machine-generated predictions (3.78°). Although previous work
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Fig. 6. Outlier Example. An example of a large standard deviation. Visual differences
in the heatmap are overlaid on the ultrasound images (left). The associated angle distri-
bution and standard deviation (right). The red arrow highlights overlapping heatmaps.

has had a smaller difference, these are only relative to one clinical ground truth.
This potentially suggests that current single-reviewer-based models may be over-
fitting. Future work can use the inter—rater variability outlined by this work as
guidance for an achievable precision. We propose that, since machine-generated
values of a have already exceeded clinical precision, there should be a move to
focus on model generalisation and confidence metrics to flag difficult cases.

The proposed confidence metric is verified by the correlation between the
total confidence score of clinicians and machine confidence (Fig 5, centre). The
confidence measure is further verified by the strong correlation of machine con-
fidence and CALD confidence when using the decision boundary as a reference
(Fig. 5, right). Together, these results illustrate the potential use of the proposed
angle confidence metric for clinical applications. The confidence metric developed
in this paper can help promote trustworthy models by having the ability to re-
port a confidence value that has been proven to correlate with clinicians. Future
work must review clinical boundaries and define an angle confidence value that
is clinically acceptable. Once these acceptable values are defined, this method
can be deployed to create diagnostic safeguards by reporting uncertain scans.

Conclusions. This work presents an automated method for computing possi-
ble angle ranges and probabilities from landmark heatmaps. We show that angle
ranges predicted using this pipeline have a variability similar to that of clinical
variability. Landmark-based angle screening with uncertainty metrics can help
develop trust in automated methods for orthopaedic tasks by having a method
for quantitative safeguards for flagging when the model is highly uncertain.
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