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Abstract. Background parenchymal enhancement (BPE) classification
for contrast-enhanced mammography (CEM) is highly affected by inter-
reader variability. Traditional approaches aggregate expert annotations
into a single consensus label to minimize individual subjectivity. By con-
trast, we propose a two-stage deep learning framework that explicitly
models inter-reader variability through self-trained, reader-specific em-
beddings. In the first stage, the model learns discriminative image fea-
tures while associating each reader with a dedicated embedding that
captures their annotation signature, enabling personalized BPE classifi-
cation. In the second stage, these embeddings can be calibrated using a
small set of CEM cases selected through active learning and annotated
by either a new reader or a consensus standard. This calibration process
allows the model to adapt to new annotation styles with minimal super-
vision and without extensive retraining. This work leverages a multi-site
CEM dataset of 7,734 images, non-exhaustively annotated by several
readers. Calibrating reader-specific embeddings using a set of 40 cases
offers an average accuracy of 73.5%, outperforming the proposed baseline
method based on reader consensus. This approach enhances robustness
and generalization in clinical environments characterized by heteroge-
neous labeling patterns.

Keywords: Background parenchymal enhancement - Contrast-enhanced
mammography - Deep learning.

1 Introduction

Contrast-enhanced mammography (CEM) is a recent breast imaging technique
based on a dual-energy X-ray mammography acquisition performed after injec-
tion of an intravenous iodinated contrast agent [20]. CEM combines a low energy
(LE) and a high energy (HE) image to create a recombined image (REC) showing
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contrast uptake and highlighting tumor angiogenesis. Compared to mammogra-
phy alone, CEM has been shown to improve sensitivity and specificity for the
detection of breast cancer [4]. Different levels of background parenchymal en-
hancement (BPE), indicating enhancement of normal fibroglandular tissue, are
observed in CEM, as well as in contrast-enhanced magnetic resonance imaging
(CE-MRI). The literature suggests that high BPE is associated with an increased
risk of breast cancer [25] and may affect image interpretation, masking, or mim-
icking cancers [16]. BPE is visually assessed and reported by radiologists using
the Breast Imaging Reporting and Data System (BI-RADS) [5] four-category
scale: minimal, mild, moderate, and marked, as illustrated in Figure 1.

This classification task remains challenging due to notable variability among
radiologists. Studies indicate heterogeneous results regarding inter-reader agree-
ment in classifying BPE in CEM and CE-MRI, ranging from fair to substan-
tial [2,8,12,15,17], based on Kappa interpretation [28|. Similarly, in digital
mammography, breast density is classified into four categories. Despite efforts to
standardize processes, human subjectivity continues to be observed [22]. Vari-
ability can be explained by several aspects:

1. Individual tendencies. Some readers may naturally tend to annotate more

extremely or conservatively.

Training, education, and institutional guidelines [1].

3. Interpretation of image characteristics, particularly the overall enhancement
patterns (e.g., distinguishing between normal tissue and non-mass enhance-
ment).

4. Prior case exposure. A reader used to high BPE cases (e.g., depending on
the patient population [21]) may reserve “marked” labels for extremes, while
another may use them more often. This exposure bias causes consistent shifts
along the BPE scale, despite agreement on case ordering.

5. Random uncertainties, mainly related to the consistency of individual reader
assessments. This refers to intra-reader variability.

o

The literature suggests that fully automated approaches can lead to more stan-
dardized and reproducible BPE classification. Deep convolutional neural net-
works (CNN) and radiomics have been proposed, reaching accuracies of 67% to
75% [3, 6,18, 23]. To train these models, studies typically create a single reference
(consensus) by combining multiple expert annotations, sometimes inconsistently
due to incomplete labeling. The most common method is majority voting. In
addition, Park et al. developed a confidence-guided learning method for breast
density classification, where radiologists’ annotations are weighted by their con-
fidence levels [19]. Li et al. introduced a method that leverages a small set of
trusted data to jointly learn a data classifier and a label aggregator [13]. Prob-
abilistic approaches have also been explored to estimate the true labels from
multiple noisy annotations [11,14] and model annotator expertise based on the
data observed [29]. Another study investigated correcting reader bias in breast
density assessment [26]. Scores on a 0-100 visual analog scale were standardized
to align readers to a common distribution. Since not all readers assessed the
same images, the method mitigated bias by comparing scores on shared cases.
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Fig. 1: BPE classification in REC images. Fig-2: BPE assessments of the test
set sorted by labels from Ry to Ry.

However, this approach may lack robustness when dealing with small sample
sizes and using the four-category BI-RADS BPE scale, which does not capture
variability between readers in such a nuanced way.

Moreover, the annotation process is resource-intensive and time-consuming,
making it difficult to collect large-scale expert-labeled datasets. In practice, BPE
and breast density classifiers are often trained using labels extracted from radi-
ology reports written by different radiologists. It can lead to inconsistencies and
affect the performance and reliability of the model predictions [27].

Rather than enforcing agreement through a single reference label, this work
proposes to explicitly model inter-reader variability. We introduce a two-stage
deep learning framework designed to handle heterogeneous and non-exhaustive
multi-reader annotations. The approach leverages self-trained, reader-specific
embeddings to capture individual annotation styles. In the first stage, the model
learns discriminative image features while associating each reader with a dedi-
cated embedding, enabling personalized BPE classifications. In the second stage,
this embedding is calibrated using a small number of annotated examples, ei-
ther from a new reader or a consensus. It enables standardized or site-specific
BPE classifications with minimal annotation effort and no need for extensive
retraining.

2 Database

This work leverages a CEM dataset of 1813 cases (7734 images) from various
clinical sites. Each case consists of at least two bilateral views (craniocaudal and
mediolateral oblique), acquired using different imaging systems: Senographe DS,
Senographe Essential, and Senographe Pristina (GE HealthCare, Chicago, IL,
USA). Several readers reviewed the dataset by assigning a BPE level per image:
minimal, mild, moderate, or marked.

The dataset was divided into three subsets: training, validation, and test.
Eight CEM experts annotated the training/validation data. Each reviewed a
different mix of cases. Ultimately, each image was annotated by at least two
readers, with the number of case readings per reader ranging from 108 to 876. The
training-validation split was stratified considering both consensus and individual
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BPE distributions. This resulted in a training set of 5832 LE/REC image pairs
(1371 cases) and a validation set of 1011 pairs (239 cases). The test set was
collected from a single clinical site and contains 891 LE/REC image pairs (203
cases). It was entirely annotated by four CEM experts, including two from the
eight training readers, specifically Reader 1 (R;) and Reader 2 (R3), with 4 and
15 years of experience in CEM.

Preliminary analyses were conducted to investigate the inter-reader variabil-
ity on the test dataset. Cohen’s Kappa [28] shows fair inter-reader agreement
(k = 0.26 £ 0.15), consistent with the literature findings. Kendall’s Tau [7] was
also employed to measure the ordinal association between readers’ labels, result-
ing in 7 = 0.69 4+ 0.05. This indicates a significant alignment in readers’ image
rankings, as illustrated in Figure 2. The latter shows the BPE distribution for
each reader and the consensus, defined as the majority vote. In case of a tie,
the highest level is chosen. The images were hierarchically and stably sorted
based on the labels assigned by each reader, in order from Reader 1 to 4. The
different interpretations of the readers regarding the BPE scale are readily ap-
parent. Reader 3 distributes his assessments uniformly across the scale, whereas
Reader 2 assigns lower BPE levels, reserving higher categories for more extreme
BPE cases. Reader 4, on the other hand, mainly uses the middle categories. Al-
though BPE distributions vary across readers, they strongly agree on the relative
ordering of images from low to high BPE. This consistency will be leveraged in
our method by capturing the reader’s signature.

3 Methods

An original two-stage deep learning framework is proposed. The first stage in-
volves training a CNN backbone jointly with reader-specific embeddings, to en-
able personalized BPE assessments (Section 3.1). The second stage calibrates
these embeddings using a small set of annotations to adapt the model output to
new readers (Section 3.2).

3.1 BPE reader-specific classifier

Figure 3 (A) shows the BPE classification model, including the image feature
extractor, reader-specific embeddings, and the classifier. We used ResNet-18 [9],
initialized with ImageNet weights, to extract 512 features from LE/REC image
pairs of 570x479 pixels. This architecture and image resolution have already
demonstrated their effectiveness in BPE classification, offering a good balance
between computational efficiency and classification accuracy [23]. In addition,
an embedding layer was used to learn reader-specific representations. This layer
is implemented as a trainable weight matrix, where each row corresponds to a
reader ID and stores a continuous, dense vector (embedding) of size D. The
embeddings encode in a low-dimensional space the annotation biases, outlined
in the Introduction. For each reader R;, the image features are concatenated
with the corresponding embedding and fed into a classifier. It comprises two
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Fig. 3: Two-stage deep learning framework for BPE reader-specific classification.

Fully Connected layers, with ReLU and Softmax activation functions to output
the four BPE class probabilities. Ultimately, a BPE score is calculated from the
model outputs within the range [0, 1] [24].

The pipeline is executed for N readers. Since no reader annotated the full
dataset, we used a batch sampling strategy to ensure balanced reader represen-
tation in each batch of 32 images. The embeddings are jointly optimized with
the network parameters via backpropagation using the SGD optimizer, by min-
imizing the average categorical cross-entropy loss across all readers [10]. The
embedding weights were initialized from a normal distribution A(0,1). Weight
decay and classic geometrical data augmentation techniques (flips and rotations)
were applied to prevent overfitting and enhance generalization.

We evaluated the effect of embedding size (D) using dimensions 1, 4, 8, 16,
32, and 64. With N = 8, the model was trained ten times to estimate the training
uncertainty and then assessed on the test set using 4-class balanced accuracy.
The mean value and the 95% confidence interval (CI) are reported. The results
are computed for R; and Rs, as they are the only readers who annotated both
training and test data.

3.2 Calibration

After training the model based on N readers using the embedding strategy for
managing inter-reader variability, we want to adapt it to a new reader, hereafter
called the reference reader. In a realistic scenario, this calibration stage relies on
a limited set of annotations, as illustrated in Figure 3 (B).

The calibration data to be annotated by the reference reader was selected
from the training and validation datasets using an active learning strategy



6 E. Ripaud et al.

that combines representative-based and uncertainty-based sampling [30]. First,
a principal component analysis was performed on the training/validation image
features extracted by our backbone. K-means clustering was employed to ensure
diversity and representativeness in sampling. For each image, the Euclidean dis-
tance to the centroid is calculated. To probe uncertainties and better capture
the reference reader’s bias, the variance of predictions from N reader-specific
embeddings was also calculated. The aim is to identify samples that exhibit
higher variability, especially those near BPE class boundaries. Representative-
based and uncertainty-based sampling are combined to select relevant images by
calculating a global score:

d —1/2
Stot = ¢ - (Z(xz - Ci)2> +(1-a)- %Z(yz -9)% (1)

i=1

where « is the adjustment coefficient chosen experimentally, d is the dimension
of the image feature vector z, c is the centroid of the cluster to which the image
belongs, y denotes the BPE score produced by the model during the first training
stage for a given reader, and ¢ is the mean score across readers.

The images with the highest scores are ultimately included in the calibration
dataset, along with views associated with the same exam. The reference reader
then annotated the selected calibration data. The dataset was divided into train-
ing and validation sets in a 70/30 ratio, stratified based on the BPE level. To
capture the signature of the reference reader, the feature extractor and classifier
were frozen while the embedding layer was updated and retrained.

Calibration was performed using R; and Rs as new reference readers. Our
model was first trained with N = 7, i.e. excluding the reference reader. The
impact of the calibration dataset size on model performance was evaluated on
the test set using 4-class balanced accuracy. Our model was compared to the
baseline method, which employs the architecture shown in Figure 3 (A) with-
out the reader-specific embeddings part and was trained on the reader consensus
(majority vote). For comparison with the calibration results, the final linear clas-
sification layers of the baseline model were specifically trained for the reference
readers.

4 Results

Figure 4 shows the classifier performance on the test set depending on the embed-
ding size for Ry and Rs. The accuracy increases significantly from an embedding
size of 1 to 32 for both readers, with less variability in performance. Stability
and performance are likely due to the richer representation provided by larger
embeddings. This helps the model to converge more consistently and capture
more detailed information on the reader’s behavior. For D = 32, the model
achieves a 4-class balanced accuracy of 71.8% (95% CI: 70.4-73.3) for Ry and
72.6% (95% CI: 71.5-73.6) for Ry. Our results are comparable to those reported
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by state-of-the-art BPE classifiers in CEM and CE-MRI [3, 6,18, 23]. The im-
plemented training strategy leverages images annotated by other readers while
effectively encoding the signature of the readers. Unlike R, a smaller embedding
size is sufficient to achieve maximum performance for Rs, stabilizing at D = 8.
R, exhibits a BPE distribution that significantly differs from other readers by
assigning more extreme BPE levels (minimal or marked), as shown in Figure 2.
We hypothesize that the model must handle a greater diversity of annotation
patterns from R;, which requires adjusting the embedding size.

Figure 5 illustrates the model BPE scores for R; and Rs, using D = 32. It
suggests a significant difference in interpretation between the two readers, which
cannot be explained by a simple bijective application affecting the scores. It ap-
pears that the larger embeddings capture not only class shifts along the BPE
scale but also other readers’ labeling variations likely related to image features.
The comparison of readers’ model scores is consistent with their labels, as shown
by the confusion matrix in Figure 6. Similar shifts are observed, indicating that
the model faithfully captures variations in the readers’ annotations in a more
nuanced way on the BPE continuous scale. This highlights the model ability
to adapt to individual differences in BPE assessments, preserving the internal
consistency of each reader’s annotations rather than enforcing a potentially mis-
leading consensus.

Figure 7 shows the performance of the calibrated embeddings for different
calibration dataset sizes, compared to the baseline model. An embedding size
of 32 was chosen, as it demonstrated the best performance for both reference
readers. No significant change in balanced accuracy is observed with the in-
creasing number of calibration data. R; shows lower performance compared to
Rs, consistent with the previous training results. For a dataset of 40 cases, our
model achieves a 4-class balanced accuracy of 71.4% for R; and 75.5% for Ra,
while the baseline model achieves 65.0% and 58.8%, respectively. Furthermore,
the baseline classifier needs a larger dataset to enhance its performance. As the
dataset size increased from 20 to 400 cases, the baseline balanced accuracy for
Ry improved significantly from 64.0% to 70.7%, and for Ry from 43.3% to 70.9%.
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It reaches a performance comparable to that of the calibrated embeddings. Dur-
ing the calibration phase, the number of trainable parameters was lower for
the embedding layer with 32 parameters compared to the baseline classifier with
1.32x 10° parameters, preventing overfitting with a small set of annotations. The
method based on calibrated embeddings, therefore, offers a more cost-effective
solution. Its consistent performance across different calibration dataset sizes sug-
gests robustness and the ability to generalize well, even with limited data. This
underscores their potential in clinical applications where data scarcity is a major
challenge.

Figure 8 shows the BPE score distribution per target class for Ry, from the
(a) embedding-based and (b) baseline models, both trained on a 40-case dataset.
The comparison of these models also reveals that the embeddings provide more
reliable predictions, as evidenced by the distributions centered on the target
class. By contrast, the baseline model incorrectly classified mild cases as minimal
with high confidence and failed to predict any marked cases.

Embeddings appear less sensitive to the BPE class distribution in the cali-
bration dataset. They enable an efficient reinterpretation of the BPE scale based
on image features. By selecting a small, informative dataset, calibration helps
adapt the model to a new reader. This applies whether the reader differs sig-
nificantly from the consensus (like R;) or shares similarities with it (like Rs).
It supports both generalization and site-specific adaptation by aligning with a
given BPE distribution. However, several improvements are needed. The applica-
tion of this method to other datasets or clinical contexts remains to be explored.
Additionally, the complexity of the embeddings can make the model’s decisions
more difficult to interpret. Exploring different active learning strategies for se-
lecting calibration data could provide deeper insights into the effectiveness of our
method. Finally, future work could aim to extend the evaluation to a larger pool
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of readers. This would further strengthen the evidence for the model’s adapt-
ability to diverse annotation styles.

5 Conclusion

This paper presents a two-stage deep learning framework to address inter-reader
variability in BPE classification for CEM. A CNN backbone is jointly trained
with reader-specific embeddings to capture annotation signatures. These em-
beddings are then calibrated for new readers using a small, actively selected
set of cases. Experiments demonstrate that this model outperforms the baseline
approach, achieving an average balanced accuracy of 73.5% without extensive
retraining, thereby enhancing robustness and generalization in clinical settings.
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