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Abstract. 3D Cone-Beam CT (CBCT) is widely used in radiotherapy
but suffers from motion artifacts due to breathing. A common clinical
approach mitigates this by sorting projections into respiratory phases
and reconstructing images per phase, but this does not account for
breathing variability. Dynamic CBCT instead reconstructs images at
each projection, capturing continuous motion without phase sorting.
Recent advancements in 4D Gaussian Splatting (4DGS) offer power-
ful tools for modeling dynamic scenes, yet their application to dynamic
CBCT remains underexplored. Existing 4DGS methods, such as Hex-
Plane, use implicit motion representations, which are computationally
expensive. While explicit low-rank motion models have been proposed,
they lack spatial regularization, leading to inconsistencies in Gaussian
motion. To address these limitations, we introduce a free-form defor-
mation (FFD)-based spatial basis function and a deformation-informed
framework that enforces consistency by coupling the temporal evolution
of Gaussian’s mean position, scale, and rotation under a unified defor-
mation field. We evaluate our approach on six CBCT datasets, demon-
strating superior image quality with a 6× speedup over HexPlane. These
results highlight the potential of deformation-informed 4DGS for effi-
cient, motion-compensated CBCT reconstruction. The code is available
at https://github.com/Yuliang-Huang/DIGS.

Keywords: Dynamic CBCT · 4D Gaussian Splatting · Deformation In-
formed.

1 Introduction

Cone-beam CT (CBCT) is widely used in image-guided radiotherapy [5] but is
prone to artifacts caused by patients’ involuntary motion, such as respiration
[25]. A common clinical approach to address this issue is 4DCBCT, which bins
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projections into different respiration phases and reconstructs a separate image for
each phase [24]. However, 4DCBCT requires extra acquisition time and radiation
dose, and is susceptible to artifacts caused by phase sorting errors [15]. More
critically, it assumes that patients’ breathing motion is regular, which is often
not the case [10]. To account for irregular motion, dynamic CBCT reconstruction
aims to estimate both the motion and the image on a per-projection basis [11,12],
where a fast motion-compensated reconstruction algorithm is needed to satisfy
the demands of clinical feasibility.

Traditional reconstruction methods typically rely on a discrete voxel grid rep-
resentation. In recent years, implicit neural representations (INR) have gained
attention for their inherent continuity and resolution independence [29]. How-
ever, INR suffers from low computation efficiency because each query point needs
to be evaluated by a multilayer perceptron (MLP). More recently, 3D Gaussian
Splatting (3DGS) has emerged as a promising alternative [13], representing the
image volume as a Gaussian point cloud and enabling fast rendering through
efficient splatting techniques [30]. While 3DGS has been applied to static CBCT
[28], applying 4D Gaussian Splatting (4DGS) for dynamic CBCT reconstruction
remains underexplored, which is the primary objective of this paper.

To the best of our knowledge, only one concurrent work [9] applies 4DGS
for 4DCBCT reconstruction, which still requires phase sorting. In this work, we
introduce several methodological innovations upon existing approaches:

1. Most current 4DGS methods, including those in non-medical applications,
model deformation with implicit representations, such as Neural Field [19] or
HexPlane [4], which incurs significant computational overhead due to MLP in-
ference. In contrast, we propose a more efficient explicit motion representation
based on Free-Form Deformation (FFD).

2. Existing 4DGS methods typically fit motion by independently modifying
the Gaussian kernel’s mean positions, scales and rotations. Although these meth-
ods can produce plausible dynamic images, they lack an interpretable spatial
correspondence between time frames. This is a critical limitation in applications
such as tumor tracking in radiotherapy, where the voxel-wise deformation vector
field (DVF) itself is as important as the reconstructed images. To address this,
we propose a deformation-informed (DI) framework that consistently updates all
Gaussian attributes according to a unified DVF. Figure 1 provides a schematic
of the proposed method.

2 Related Work

2.1 Explicit Motion Representation

Several studies have used explicit representation for motion fields in 4DGS. For
example, Gaussian-flow [17] parameterizes the motion of each Gaussian as poly-
nomial curves and Fourier series. Other studies [14,3] factorize the motion field
into a linear combination of a few learnable basis. Yang et al. [27] also use a low-
rank motion model but constrain the temporal basis to be Gaussian functions.
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Fig. 1. Schematic illustration of the proposed method. A continuous free-form defor-
mation (FFD) is constructed from a set of learnable spatial and temporal basis, which is
used to warp the reference Gaussians though a deformation-informed (DI) framework.
Projections rendered from the dynamic Gaussians are compared with the measured
projections and the optimiser updates the reference Gaussians and the motion basis to
minimize their difference.

These methods fit the weights of motion basis for each Gaussian independently,
without imposing any smoothness constraint on the motion of adjacent Gaus-
sians. In comparison, our proposed method interpolates the basis weights from
a free-form deformation field [18,22] that enforces adjacent Gaussians to move
consistently with each other.

2.2 Applying Deformation Fields to Gaussian Kernels

Most 4DGS methods learn the temporal changes of the Gaussian’s mean posi-
tion, scale and rotation independently. In contrast, inspired by continuum me-
chanics [2], physics-based 3DGS simulates dynamic scenes by explicitly applying
continuous DVF to Gaussians, by deriving the transformation of scale and ro-
tation from the Jacobian of mean position deformation [26,16,8]. While these
previous works focus on applying synthetic deformation to static objects, we are
the first to apply a physics-based DI framework for handling motion in image
reconstruction problems.

3 Methodology

3.1 Preliminary: 3DGS for CBCT reconstruction

Given a set of measured projections {Pt}t=1,...,Nt
for Nt time points, the problem

of CBCT reconstruction can be formulated as an inverse problem:

min
ϕx

Nt∑
t=1

L(F(ϕx), Pt) (1)

where F is the X-ray transform, ϕx is the attenuation field, and L is the dissim-
ilarity between re-projection and measured data.
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Defining a set of Gaussian kernels {Gn}n=1,...,Ng
as

Gn(x|ρn,µn,Σn) = ρne
− 1

2 (x−µn)
TΣ−1

n (x−µn) (2)

where ρn is the density, µn is the mean position, Σn = RnSnS
T
nR

T
n is the

covariance matrix that can be decomposed into scale Sn and rotation Rn. Sn is a
diagonal matrix and Rn is an orthonormal matrix parameterized by quaternion.
The attenuation field can be represented as the superposition of these Gaussian
kernels:

ϕx =

Ng∑
n=1

Gn(x|ρn,µn,Σn) (3)

Cone-beam projection of a 3D Gaussian onto a 2D plane can be approximated
by a 2D Gaussian:

G̃n = ρ̃ne
− 1

2 (x̃−µ̃n)
T Σ̃

−1
n (x̃−µ̃n) (4)

The tilde over the letters refers to the 2D counterpart of the variable, i.e. x̃ and
µ̃n are the projections of x and µn. Σ̃n can be obtained by dropping the third
row and column of JnWΣnW

TJT
n where W is the projection-angle dependent

viewing transform and Jn is the local Jacobian of the perspective transform. ρ̃n
is ρn scaled by the integration bias factor proposed in [28]. The X-ray transform
of ϕx can then be approximated by the superposition of the 2D Gaussians, i.e.
F(ϕx) ≃

∑Ng

n=1 G̃n(x̃). A gradient-based method is then used to optimize Eqn(1)
to fit the attributes of each Gaussian, i.e. {ρn,µn,Rn,Sn}n=1,...,Ng

.

3.2 Deformation-Informed 4DGS

4DGS extends 3DGS to dynamic scenes by allowing the attributes of the Gaus-
sians to vary over time. Many 4DGS methods use separate models for estimating
the change of each attribute, i.e.

vn,t = vn,0 + fvn(t) (5)

where vn,t refers to the values of any attribute in {ρn,µn,Rn,Sn}n=1,...,Ng
at

time t, and fvn
(t) is an attribute-specific function that gives the change of vn,t

against vi,0 at time t.
From this, the dynamic images can be generated by

ϕx(t) =

Ng∑
n=1

Gn(x|ρn,t,µn,t,Σn,t), t = 1, ..., Nt. (6)

However, if changes of Gaussian parameters are modeled independently, it is
impossible to derive a continuous DVF that is consistent with the rendered
dynamic images, i.e. one cannot define a transformation that maps a voxel-
grid representation of one dynamic image to another. To see this, consider two
initially overlapping Gaussian that move apart over time, there is no spatial
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transformation that can map the overlapping Gaussians to the two separate
Gaussians.

Instead of allowing each attribute to evolve independently, we follow a physics-
based 3DGS approach [26] and warp the Gaussian kernels using a unified DVF.
More specifically, the mean positions are shifted directly with the DVF D, i.e.

µn,t = D(µn,0, t) (7)

and the covariance matrices are derived by approximating D by a locally linear
deformation, i.e.

Σn,t ≃ KΣn,0K
T , K = ∇µD(µn,0, t) (8)

and ρn remains constant over time. This ensures that all attributes of the Gaus-
sian kernels are updated consistently by the same DVF.

3.3 Explicit Low-Rank B-Spline Motion Model

The DVF can be decomposed into a linear combination of a few spatial and
temporal basis functions, ur(x) and ωr(t), i.e.

D(x, t) = x+

Nr∑
r=1

ωr(t)ur(x) (9)

where Nr is the number of basis functions, much smaller than Ng and Nt.
Each spatial basis ur(x) is explicitly parameterized by a set of control points

arranged on a uniform Nx × Ny × Nz lattice with predefined spacing, and
each control point stores a displacement vector dr

ijk, where i ∈ {1, ..., Nx}, j ∈
{1, ..., Ny}, k ∈ {1, ..., Nz}, r ∈ {1, ..., Nr}. Let x be a point in world space and
p = (p1, p2, p3) its corresponding coordinates in the lattice index space. ur(x) is
interpolated from the 4× 4× 4 control points surrounding x:

ur(x) =

3∑
l=0

3∑
m=0

3∑
n=0

Bl(p1 − ⌊p1⌋)Bm(p2 − ⌊p2⌋)Bn(p3 − ⌊p3⌋)dr
i,j,k (10)

where i = ⌊p1⌋−1+ l, j = ⌊p2⌋−1+m, k = ⌊p3⌋−1+n, ⌊·⌋ is the floor function
and Bl is the lth cubic B-spline basis function [22]. The Jacobian is given by

K(x, t) = I +

Nr∑
r=1

ωr(t)∇ur(x) (11)

ωr(t) is also parameterized by a 1D B-Spline. A customized CUDA kernel is
implemented to efficiently perform differentiable cubic B-spline interpolation.
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4 Experiment Settings

4.1 Datasets

XCAT Simulation The 4DXCAT software [23] was used to generate digital
phantom images with dimension of 375×375×345 and resolution of 1 mm as well
as simulated motion controlled by breathing traces. The raw DVFs were post-
processed by cidX software [6] to avoid folding and preserve sliding motion. RTK
[20] was then used to generate 310 projections in a full circle with dimension of
512×512 and resolution of 0.8 mm. The detector was offset by 116 mm. Distances
from source to isocenter and source to detector are 1000 mm and 1536 mm
respectively. This is the same as the acquisition geometry of a real CBCT scan.
Poisson noise (λ = 108) and Gaussian noise (σ = 4) was added to the projections
to simulate quantum and electronic noise. Two sets of breathing traces were
measured from cine MR images of real patients and used as input to XCAT to
create two datasets, denoted as case 1 and 2 respectively.

Simulation from 4DCT patient images Simulated data were generated us-
ing clinical 4DCT images from four patients in the 4DLung dataset [1]. All phases
were registered to the end-exhalation phase using NiftyReg [18], with default
parameters except for the use of sliding registration [7]. Principal Component
Analysis (PCA) was then applied to the stack of deformation fields, preserving
the mean deformation and the two dominant principal components. To simulate
20 breathing cycles, the fitted principal component weights were replicated while
introducing a slow drift. Additionally, the motion magnitude of each breathing
cycle was scaled by a random factor between 0.8 and 1.2 to simulate variability
in breathing motion. 310 time points were then uniformly sampled from the 20
breathing cycles to generate CBCT projections, following the same procedure as
for XCAT data. The four simulations are denoted as case 3-6 respectively.

4.2 Implementation Details

The Gaussian point cloud is initialized by sampling 80K points from conjugate
gradient least square reconstruction, in line with [9] for fair comparison. The
B-Spline control points have a spacing of every 4 time points and 8 voxels. Nr is
set to 2. L2 loss in projection space is used for training. The reference Gaussians
and the space-time B-Spline grids are jointly updated with Adam optimizer for
50K iterations. Initial learning rates for the space and time B-Spline grids are
set to 10−4 and 10−2 respectively, and decay linearly to 10−5 and 10−3 by the
final iteration. The gradient threshold for density control is 5 × 10−8. All the
other hyper-parameters are the same as in [28].

4.3 Evaluation

Our proposed method is compared with two other methods. SuPReMo [11] fits a
linear model between the DVF and low-dimensional surrogate signals extracted



DIGS for dynamic CBCT 7

from projections, and uses motion compensated FDK [21] as the reconstruction
algorithm. HexPlane-based 4DGS method [9] encodes spatial-temporal features
with six 2D grids which are then fed into multi-head MLP to obtain the time-
varying attributes per Gaussian kernel. The original method has only been ap-
plied on phase-sorted data, where projections of the same phase are treated as
the same time-point. To compare with the proposed method, each projection is
treated as an individual time-point.

We also perform two ablation studies. To investigate the impact of ensuring
that all Gaussian attributes change consistently with the underlying FFD, Ab-
lation Study 1 allows each Gaussian attribute to vary independently over time.
Building on this, Ablation Study 2 further removes the FFD representation en-
tirely; that is, the spatial basis is no longer interpolated from the control point
grid but instead stored as a separate attribute for each Gaussian.

All the experiments are run on a single RTX3090 GPU. The results are
evaluated by the average Root-Mean-Squared-Error (RMSE) and Peak-Signal-
Noise-Ratio (PSNR) between the estimated dynamic images at each time-point
and the ground-truth. The ground truth is created by warping reference images
with the simulated DVFs. All evaluations are within the reconstruction FOV.

5 Results

Table 1 lists the average PSNR and RMSE of dynamic reconstruction at all time
points obtained by different methods and the corresponding computation time.
While SuPReMo [11] achieves the fastest speed, it yields the lowest image qual-
ity. Compared with HexPlane [9], our proposed method is about six times faster
while achieving better image quality. Ablation Study 1 leads to a slight improve-

Table 1. Performance of proposed method on simulation data in comparison with
SuPReMo [11] and HexPlane [9] as well as ablation studies excluding deformation-
informed (DI) framework and Free-Form Deformation (FFD). Best results are in bold.

Case PSNR (dB) ↑ RMSE (10−3 mm−1) ↓ Time ↓

SuPReMo HexPlane Ours SuPReMo HexPlane OursSuPReMo HexPlane Ours

1 18.49 21.98 25.46 1.63 1.91 1.28 47s 1h31m 16m14s
2 18.26 21.15 21.78 1.88 2.12 1.97 1m 1h27m 15m48s
3 21.46 26.82 29.48 5.08 2.78 2.02 41s 1h43m 14m34s
4 24.79 28.48 30.94 3.46 2.29 1.71 1m2s 1h49m 14m1s
5 24.66 29.35 31.66 3.51 2.10 1.58 45s 1h38m 16m14s
6 20.79 27.36 29.49 5.39 2.68 1.99 48s 1h50m 16m26s

Mean 21.41 25.86 28.14 3.49 2.31 1.76 51s 1h40m 15m32s

Ablation Studies

Ablation1Ablation2 Full Ablation1Ablation2 Full Ablation1Ablation2 Full

Mean 28.25 27.29 28.14 1.73 1.95 1.76 17m1s 14m50s 15m32s
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Ground Truth SuPReMo HexPlane Ours

Fig. 2. Ground-truth and reconstructed mean position images for case 2 (top), case 3
(middle) and case 5 (bottom). Dynamic range: 0.00 - 0.03 mm−1

ment, but remains comparable to results of using a unified DVF. Ablation Study
2 results in a noticeable performance drop.

Figure 2 plots example coronal slices of the reconstructed mean position im-
ages for three cases with the lowest, median and highest PSNR values, respec-
tively. Compared with SuPReMo and HexPlane, the proposed method produces
sharper diaphragm with less noise and motion artifacts.

6 Discussion and Conclusion

Our results demonstrate that the proposed method significantly improves both
computational efficiency and image quality in dynamic CBCT reconstruction.
Compared to HexPlane, our approach achieves a 6× speedup while producing
sharper images with fewer motion artifacts. While SuPReMo is the fastest, it
results in the lowest image quality, highlighting the trade-off between speed and
accuracy. Qualitative results (Figure 2) further support these findings, show-
ing that our method produces sharper diaphragm boundaries and fewer motion
artifacts, even in challenging cases with low PSNR.

Ablation Study 1 assesses the impact of enforcing consistent updates on
all the Gaussian parameters, compared to allowing each parameter to evolve
independently. It is unsurprising that the decoupled method reconstructs the
dynamic images slightly better, as there are more parameters to fit and the
Gaussians have more flexibility to match the projection data. The important
conclusion is that imposing consistent updates only has a minor impact on re-
construction metrics, but requires fewer parameters, reduces training time, and
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more importantly enables consistent continuous DVFs to be generated. Abla-
tion Study 2 eliminates the FFD model and fits motion independently for each
Gaussian, which significantly degrades performance. This highlights the critical
role of spatial regularization in maintaining motion coherence across neighboring
Gaussians.

In conclusion, our DI framework and FFD model effectively balances accu-
racy, efficiency, and robustness for dynamic CBCT reconstruction. Future work
will explore physics-based deformation models and further optimization strate-
gies for clinical applications.
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