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Abstract. Current self-supervised denoising techniques achieve impres-
sive results, yet their real-world application is frequently constrained by
substantial computational and memory demands, necessitating a com-
promise between inference speed and reconstruction quality. In this pa-
per, we present an ultra-lightweight model that addresses this challenge,
achieving both fast denoising and high quality image restoration. Built
upon the Noise2Noise training framework—which removes the reliance
on clean reference images or explicit noise modeling—we introduce an in-
novative multistage denoising pipeline named Noise2Detail (N2D). Dur-
ing inference, this approach disrupts the spatial correlations of noise
patterns to produce intermediate smooth structures, which are subse-
quently refined to recapture fine details directly from the noisy input.
Extensive testing reveals that Noise2Detail surpasses existing dataset-
free techniques in performance, while requiring only a fraction of the
computational resources. This combination of efficiency, low computa-
tional cost, and data-free approach make it a valuable tool for biomedical
imaging, overcoming the challenges of scarce clean training data—due to
rare and complex imaging modalities—while enabling fast inference for
practical use.
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1 Introduction

Image denoising is one of the fundamental tasks in computational imaging, par-
ticularly in medical and biological contexts, where it seeks to eliminate visual
artifacts to enhance applications like medical diagnosis and microscopy imaging
[9,13,8]. State-of-the-art denoising methods, however, often grapple with achiev-
ing a balance between efficiency and performance in these fields. Typically, these
approaches depend on large datasets of paired noisy and clean images to train im-
age reconstruction models. While such techniques yield impressive results, their
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utility in biomedical imaging is curtailed by the challenges of acquiring such
datasets which are not only costly and time-intensive but often impractical due
to the inherent scarcity and complexity of obtaining noise-free biological samples,
such as high-quality tissue scans or cellular images. Moreover, models trained
on generic or unrelated datasets struggle to adapt to the unique noise distribu-
tions and intricate details of biomedical images, where even subtle deviations can
compromise diagnostic accuracy. This is a significant limitation in clinical and
biological research, where retaining fine details—such as cellular structures or
pathological markers—is paramount for precise analysis and reliable diagnosis.
Consequently, there is a pressing need for denoising techniques that are both
data-efficient and adaptable, capable of delivering robust performance in med-
ical and biological imaging without the harsh requirement of extensive paired
training data.

To address these issues, several unsupervised denoising methods have been
proposed as potential alternatives. Methods such as Noise2Noise [6], Noise2Void
(N2V) [4], Neighbor2Neighbor (Ne2Ne) [3], Zero-Shot Noise2Noise (ZS-N2N)
[10], and others [2,14,15,16] aim to utilize the intrinsic characteristics or pat-
terns within the data, bypassing the requirement for noise-free reference images,
or they harness the architecture of deep neural networks to extract low-level im-
age details. However, these methods often suffer from significant limitations, such
as high computational and memory requirements, suboptimal denoising perfor-
mance, or reliance on prior knowledge of the noise distribution—information
that is often difficult to obtain in real-world scenarios.

In this work, we build on Noise2Noise [6] and Zero-Shot Noise2Noise [10] to
develop a lightweight denoising method termed Noise2Detail (N2D) that elim-
inates the need for noise model knowledge, extensive pre-training or clean ref-
erence datasets. Our approach uses a simple three-layer convolutional network
designed for efficient execution on both GPUs and CPUs, enhancing its prac-
ticality in resource-constrained biomedical settings like clinical diagnostics or
research labs. The restoration process begins with a simple network generating
a partially restored image after being trained on two downsampled versions of
the noisy input, though background artifacts persist due to limited model ca-
pacity. Next, a multi-stage denoising step using pixel-shuffled images refines the
background by breaking spatial noise correlations, albeit with a slight trade-off
in foreground sharpness. Finally, we re-use the network and fine-tune its weights
to sharpen these critical foreground details, guided by the original noisy image.
This balance of efficiency and performance makes it an effective tool for biomed-
ical applications requiring rapid, precise denoising. We provide the source code
here: https://github.com/ctom2/noise2detail. The contributions of this paper
are as follows:

1. Lightweight Denoising Solution. We propose a compact denoising model
with just three convolutional layers, ensuring minimal computational cost.
This enables rapid, high-quality image restoration, making it highly practi-
cal for biomedical imaging applications where computational resources are
limited and fast inference is essential, such as in smart microscopy.

https://github.com/ctom2/noise2detail
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Fig. 1: Overview of our proposed Noise2Detail denoising framework. Initially, fθ
is trained to denoise an image using a single-image Noise2Noise loss, but residual
artifacts persist due to the limitations of the training (see the yellow arrow in the
zoomed in insets). We then freeze the weights of the network, apply a sequential
refinement to remove the background artifacts, and then retrain fθ∗ to enhance
the foreground details, yielding the final denoised image.

2. Data-Efficient Framework. Our three-step framework performs denoising
without requiring clean reference data—an important advantage in biomed-
ical imaging, where such data is often scarce or may not exist at all.

3. Diverse Biomedical Data Evaluation. We rigorously evaluate our method
on CT scans with synthetic noise and a fluorescence microscopy dataset af-
fected by real noise, demonstrating its ability to restore degraded images
while preserving fine structural details.

2 Method

2.1 Revisiting Noise2Noise

In supervised image denoising, models fθ are typically trained to map a noisy
input y to an estimate fθ(y) of the clean image x, requiring paired noisy and
clean data, where y = x+ e and e is additive noise. Conversely, Noise2Noise [6]
demonstrates that two noisy versions of the same image, y1 = x + e1 and y2 =
x+ e2, with e1 and e2 as independent noise instances, can substitute for noisy-
clean pairs. The insight is that a model trained to predict y2 from y1 cannot
learn the random noise but instead captures the consistent, correlated structure
of the clean signal x, resulting in:

argmin
θ

E
[
∥fθ(y1)− x∥22

]
= argmin

θ
E
[
∥fθ(y1)− y2∥22

]
. (1)

With infinite paired noisy samples, Noise2Noise theoretically matches the per-
formance of training with clean data [6], as the unpredictable noise is ignored in
favor of the learnable signal. In practice, finite data causes a slight performance
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drop, and acquiring two pixel-aligned noisy images of the same scene is often
impractical or costly, especially in applications like biomedical imaging, limiting
its actual applications.

2.2 Zero-Shot Denoising and Its Limitation

To address the limitations of Noise2Noise training, ZS-N2N [10] extends Ne2Ne
[3] to operate on single images through spatial downsampling. Given a noisy
image y ∈ RH×W×C , two subsampled views D1(y), D2(y) ∈ RH/2×W/2×C are
generated via stride-2 convolutions with diagonal averaging kernels:

k1 =

[
0.5 0
0 0.5

]
, k2 =

[
0 0.5
0.5 0

]
. (2)

These kernels preserve local averages while creating pseudo-pairs for self-supervised
training. The denoising network fθ then learns a noise residual through a sym-
metric loss:

Lres =
1

2
(∥D1(y)− fθ(D1(y))−D2(y)∥22
+∥D2(y)− fθ(D2(y))−D1(y)∥22),

(3)

To mitigate overfitting, the additional consistency loss enforces agreement be-
tween denoised and downsampled outputs:

Lcons =
1

2
(∥D1(y)− fθ(D1(y))−D2(y − fθ(y))∥22
+∥D2(y)− fθ(D2(y))−D1(y − fθ(y))∥22).

(4)

The total loss L = Lres+Lcons ensures stable training, and then the final denoised
image can be obtained as x̄ = y − fθ(y). However, averaging diagonal pixels
poorly represents true noise distribution and retains spatial correlation of real
noise [18], causing artifacts and reduced performance. We use this as the first
stage of our pipeline, with fθ supporting later quality-enhancing steps.

2.3 Refining Denoised Outputs with Pixel-Shuffle Techniques

To mitigate the challenges above, we propose a two-stage refinement framework
that breaks noise correlations while preserving authentic image structures from
the input noisy image.

Noise Correlation Elimination. A key component of our proposed Noise2Detail
method is the use of pixel-shuffle downsampling (PD) [18,5] to disrupt spatial
noise patterns. For stride s, PD decomposes y into s2 non-overlapping sub-images
PDs(y) = {ps,i(y)}s

2

i=1, that then can be again rearrengend into the original im-
age structure through an inverse operator PD−1.
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Fig. 2: Illustration of the sequential enhancement process with a trained network
fθ. For every j ∈ J , fθ is applied twice—initially to denoise the pixel-shuffled
downsampled image, and then to correct the grid-like artifacts caused by dis-
rupted spatial correlations when reconstructing the original pixel layout.

Thus, a naive and straighforward approach would be taking the noisy in-
put image y, applying PD to break the spatial correlations, denoise it using the
trained model fθ, and then reshuffle the pixels back to their original positions.
However, this approach introduces two critical issues: (1) The discontinuity be-
tween pixels in the denoised image produces grid-like artifacts as shown in [11],
degrading the quality of the outputs. (2) While PD effectively breaks the spatial
correlations between noisy pixels, it inherently also disrupts the spatial correla-
tions of the signal pixels. This rearrangement can break the original structures,
leading to over-smoothed results, as the model can no longer rely on local pixel
relationships.

To address those challenges, we introduce a sequential denoising refinement
process. After computing the initial PD-denoised estimate x̃j , we leverage the
pre-trained model fθ to further denoise the unshuffled image as follows:

x̃j = PD−1
j (PDj(y)− fθ(PDj(y))) , (5)

x̂j = x̃j − fθ(x̃j). (6)

However, while this refinement step mitigates unwanted artifacts in the denoised
image, the use of PD breaks the spatial correlations between pixels, resulting
in a smoothing effect that blurs fine details and sometimes eliminates them
completely. This happens because downsampling reduces the number of pixels
available for the model to predict detailed structures, limiting its ability to re-
construct the full resolution of intricate features present in the original image.
To overcome this, we blend the original partially denoised output x̄ with the re-
fined outputs x̂j , effectively merging preserved structural details with smoother
regions into a unified representation:

¯̄x =
1

1 + |J |

x̄+
∑
j∈J

x̂j

 . (7)

We illustrate the refinement process in Figure 2.

Detail Recovery. To restore lost foreground details, we introduce a detail
enhancement process. We repurpose the network fθ and retrain it with a modified



6 T. Chobola et al.

residual and consistency loss, as defined in Equations 8 and 9, respectively. Here,
the network fθ∗ uses the partially denoised image ¯̄x as input and targets the
original noisy image y. Since the network cannot predict the random noise in
y from the denoised ¯̄x, it focuses on refining the structural details, effectively
enhancing the foreground features.

Lres+ =
1

2
(∥fθ∗(D1(¯̄x))−D2(y)∥22
+∥fθ∗(D2(¯̄x))−D1(y)∥22),

(8)

Lcons+ =
1

2
(∥fθ∗(D1(¯̄x))−D2(fθ∗(¯̄x))∥22
+∥fθ∗(D2(¯̄x))−D1(fθ∗(¯̄x))∥22).

(9)

With the trained network fθ∗ , we then obtain the final denoised image as follows,
ẋ = fθ∗(¯̄x). The complete denoising framework is visualized in Figure 1 with an
image from BioSR dataset [12].

3 Experiments and Results

3.1 Datasets and Performance Comparison

We conduct experiments on data with synthetic and real noise. Using a 33-slice
CT scan of a spleen from the MSD dataset [1], we apply Gaussian and Pois-
son noise. For real-world data, we use the FMD testing set [17] consisting of 48
images, featuring noisy fluorescence microscopy images of cells, zebrafish, and
mouse brain tissues, with clean ground-truth images averaged from 50 noisy ob-
servations. We compare our method to state-of-the-art self-supervised denoising
methods: DIP [15], N2V [4], Ne2Ne [3], N2S [2], and ZS-N2N [10], using orig-
inal training setups except for Ne2Ne and N2S, where we apply single-image
adaptations from [7] to make the comparisons fair.

3.2 Implementation Details

Our model f uses a compact design with just three convolutional layers. The first
two transform input channels into a 48-dimensional feature space, and the final
layer converts these back to image space. With only about 22,000 parameters, it
is far smaller and more efficient than existing methods, which often have millions
of parameters requiring high computational costs. We train parameters θ and θ∗

for 2,000 iterations at a 1×10−3 learning rate. For refinement, we use j ∈ {2, 4},
optimized based on our ablation study in Subsection 3.3. Results and inference
times come from testing on an NVIDIA A100 GPU.
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3.3 Ablation Study

To analyze the impact of different combinations of PD-processed images in the
refinement step on denoising a spleen CT scan degraded by synthetic Poisson
noise, and to justify hyperparameter choices, we conducted an ablation study.
The results, detailed in Table 1, demonstrate that incorporating images pro-
cessed with broken spatial correlation significantly improves the performance of
our proposed framework, thus supporting our design approach. Specifically, the
highest performance is achieved when combining images for j ∈ {2, 4}, while
including additional image for j ∈ {2, 4, 8} leads to a performance drop due to
over-smoothing, which reduces detail visibility.

Table 1: Performance comparison based on PSNR with indicators for included
variables under synthetic Poisson noise λ ∈ [10, 50].

x̄ x̂2 x̂4 x̂8 PSNR↑ (dB)

✓ 30.75
✓ ✓ 31.48
✓ ✓ ✓ 31.56
✓ ✓ ✓ ✓ 31.23

3.4 Results

Our quantitative analysis of results for removing synthetic and real microscopy
noise is shown in Tables 2 and 3. Table 2 lists the average inference times for 512×
512 pixel images from the FMD dataset. Our proposed approach N2D achieves
the best performance for synthetic noise removal and second best performance
for real microscopy noise, outperformed only by N2S. However, the inference
time of our method is significantly lower than N2S. This combination of strong
performance and low computational cost emphasizes the strength of our method,
positioning it as a competitive alternative to larger and expensive methods.
Figures 3 and 4 visualize the denoising results, demonstrating that our method
uniquely delivers high-quality results without hallucinating background artifacts,
and maintaining high levels of detail fidelity.

4 Conclusion

In this work, we present Noise2Detail, a lightweight denoising framework de-
signed for biomedical imaging, where clean data is scarce and the use of large
models are often not feasible. Built on Noise2Noise, our three-layer network
employs a sequential process of refinement, background correction, and detail
enhancement. It restores images efficiently without requiring noise model as-
sumptions or extensive datasets. Evaluations on medical and biological datasets
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Table 2: Performance comparison across different synthetic noise levels with
PSNR↑ (dB). Best result is in bold, second best result is underlined.

Noise DIP N2V Ne2Ne N2S ZS-N2N N2D (ours)

Gaussian σ = 25 27.31 27.59 19.34 29.18 28.97 29.36
Gaussian σ ∈ [10, 50] 26.62 26.94 18.87 28.81 28.47 28.84
Poisson λ ∈ [10, 50] 27.08 28.65 19.97 31.50 31.28 31.56

Average 27.00 27.73 19.40 29.83 29.57 29.92

(a) Input (b) N2V (c) N2S (d) ZS-N2N (e) Ours (f) GT

Fig. 3: Our method is the only one that maintains the fidelity of the foreground
while keeping the background smooth without artifacts.

Table 3: Performance comparison across subsets of FMD [17] with PSNR↑ (dB),
and average inference times per image. Best result is in bold, second best result
is underlined.

Subset DIP N2V Ne2Ne N2S ZS-N2N N2D (ours)

Confocal_BPAE 31.07 33.58 14.93 34.92 34.82 35.35
Confocal_FISH 23.99 30.26 14.82 31.86 30.46 30.80
Confocal_MICE 29.60 35.06 11.98 36.80 35.95 36.22
TwoPhoton_BPAE 27.35 32.19 16.79 33.59 32.69 32.95
TwoPhoton_MICE 25.41 32.59 16.62 33.33 32.71 33.14
WideField_BPAE 28.40 25.98 17.16 25.54 25.83 26.20

Average 27.64 31.61 15.38 32.67 32.08 32.44

Inference time (s) 82 42 413 1250 13 24

confirm its ability to preserve details and remove noise effectively. This scalable
method supports rapid denoising, enhancing biomedical research applications.

Acknowledgments. Tomáš Chobola is supported by the Helmholtz Association under
the joint research school "Munich School for Data Science - MUDS".
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(a) Input (b) DIP (c) N2V (d) N2S (e) Ours

Fig. 4: Examples of restoration given a noisy image of a zebrafish from a confocal
microscope taken from FMD [17]. N2V and N2S oversmooth and blur the details
while our method maintains the structural fidelity.
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