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Abstract. Multi-parametric magnetic resonance imaging (MRI) is an
advanced MRI technique that can provide multiple quantitative maps si-
multaneously based on acquired multi-echo images. However, the lengthy
scan time often limits its application. Accelerated multi-parametric MRI
using deep learning is of great interest. The existing studies have two
limitations: 1) inefficient use of the multi-echo information; 2) lack of
physical prior for parametric mapping. To address these issues, in this
work, we propose a novel decoupling-driven and physics-informed recon-
struction network for accelerated multi-parametric MRI. Specifically, to
better align and integrate multi-echo information, we propose a novel
decoupling technique consisting of wavelet-driven decoupling module,
contrastive and echo-dependent decoupling losses, such that the multi-
echo features can be effectively decoupled into echo-dependent and echo-
independent components. Only the echo-independent features are fused
across multiple echoes. Besides, Bloch equations are incorporated as
physical priors to guide the parametric mapping network. Experimental
results on our in-house data (12-echo sequence) show that our method
outperforms the state-of-the-art methods by 1.54% in average SSIM and
1.70dB in average PSNR for 4× acceleration, which significantly ad-
vances the performance limitation for multi-parametric MRI. Our code
is available at https://github.com/IDEARL23/WDPM-Net.

Keywords: Multi-parametric MRI · Quantitative MRI · Wavelet-driven
· Feature decoupling · Physics-informed mapping.

1 Introduction

Multi-parametric magnetic resonance imaging (MRI) is an advanced MRI tech-
nique that can provide intrinsic tissue properties like proton density (PD), T1

map, and T∗
2 map simultaneously through a single scan [11, 22] and is safer

than the radioactive imaging modalities, such as computed tomograph (CT)
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and positron emission tomography (PET) [5]. However, the multi-echo nature
of the acquisition sequence results in prolonged scan times, thereby highlighting
the importance of accelerated acquisition in multi-parametric MRI.

Multi-parametric MRI pipelines usually contain two separate steps: multi-
echo image reconstruction from under-sampled k-space data and desired maps
or images estimation via signal modeling [4,22,23]. Current deep learning-based
approaches for multi-parametric MR imaging mainly fall into two categories:
(1) Two-step methods [2,24] and (2) One-step methods [1,6,9]. The former one
first reconstructs multi-echo images from undersampled k-space [7, 8], and then
estimates parametric maps via empirical physical models [4,22,23]. Such frame-
work suffers from error propagation due to the remaining artifacts left in the
reconstructed images in step one. The latter one like MANTIS [9] directly maps
k-space to parametric maps via unified networks, yet ignores intermediate super-
vision on the reconstructed images. The recent work SRM-Net [11] attempts joint
optimization of the reconstruction and mapping networks. Although they have
achieved noticeable performance improvement, they still have two main limita-
tions: (1) the highly-coupled multi-echo information is inadequately exploited;
and (2) no physical prior is integrated for parametric mapping. In summary,
both categories struggle to balance multi-echo synergy, physics constraints, and
co-optimization, highlighting unmet needs for effective multi-echo feature inter-
action mechanisms and physically constrained mapping architectures.

To this end, we introduce a novel Wavelet-driven Decoupling and Physics-
informed Mapping Network (WDPM-Net) designed for efficient multi-echo fea-
ture interaction and physics-guided parametric mapping. First , we decouple the
echo-independent features (e.g., anatomical structures) from the echo-dependent
features (e.g., contrast) by adaptively weighed wavelet transformation and two
elaborately designed decoupling losses. The echo-independent features are aligned
and fused to form consensus for robust reconstruction. Second , we introduce
a physics-informed mapping network (PIMN) by integrating analytically esti-
mated maps as prior to guide the mapping network, ensuring more accurate and
reliable parametric mapping. In summary, our contributions are mainly four-fold:

1. We propose a novel Decoupling-driven and Physics-informed Reconstruction
Network (WDPM-Net) for accelerated multi-parametric MRI, effectively ad-
dressing the limitations of inefficient multi-echo exploration and overlooking
of physical priors in deep learning-based multi-parametric MRI.

2. We introduce an effective feature decoupling scheme including dedicated
Wavelet-driven network and elaborately designed contrastive and echo-dependent
consistency losses, which enables more efficient multi-echo integration.

3. We have developed the first physics-informed parametric mapping network
by combining data-driven prediction with physics-driven Bloch equations,
improving the robustness and fidelity of the estimated parametric maps.

4. Experimental results on our in-house dataset (12-echo sequence) demon-
strate that our method outperforms the state-of-the-art methods by 1.54%
in average SSIM and 1.70dB in average PSNR for 4× acceleration, signifi-
cantly advancing the performance limitation for multi-parametric MRI.
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Fig. 1. The overall framework of the proposed WDPM-Net with (a) multi-echo re-
construction, (b) physics-informed parametric mapping in an end-to-end manner to
accelerate multi-parametric MRI, (c) details of the reconstruction unit (RU), and (d)
details of the echo-dependent decoupling loss. The reconstruction network consists of
cascaded RUs, containing wavelet-driven decoupling and echo-independent feature fu-
sion modules, to refine multi-echo MR reconstruction. The mapping network estimates
the maps based on the reconstructed images under the guidance of Bloch equations.

2 Method

2.1 Overview of the Proposed Framework

Our framework comprises two main parts: (a) a multi-echo reconstruction net-
work and (b) a parametric mapping network as shown in Fig. 1. The multi-
echo reconstruction network consists of cascaded reconstruction units (RU) fol-
lowed by a data consistency layer to reconstruct and refine the multi-echo im-
ages. Based on this, the physics-informed parametric mapping network generates
the quantitative maps under the guidance of the initial estimation from multi-
dimensional integration (MDI) and Bloch equations [22].

2.2 Wavelet-driven Feature Decoupling and Fusion

Wavelet-driven Decoupling Module. Feature decoupling aims to separate
features into varied parts to finely control the information sharing adhered to
domain priors and has presented promising performance in multi-modal fea-
ture fusion in MRI analysis [8, 10, 13, 14]. Though there were attempts to dis-
entangle features for MR reconstruction, their performance is limited by in-
sufficient decoupling [14, 21] or hand-crafted separation [15]. Moreover, some
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works [15, 17, 19, 20] were tailored to two contrasts thus hard to extend to com-
plex scenarios such as multi-echo reconstruction. In this work, we employ wavelet
transforms to decompose features into approximation (LL) and detail (LH, HL,
HH) subbands, facilitating decoupling of different frequency components inher-
ent in the features. By applying a spatial attention mechanism in the wavelet
domain, we can adaptively emphasize the echo-independent features in an adap-
tive manner. Specifically, for each echo t, corresponding extracted features F t

are transformed into wavelet subbands F t
w ∈ RC×H

2 ×W
2 via discrete haar wavelet

transform (DWT). Spatial attention maps Mt ∈ [0, 1]4C×H
2 ×W

2 , generated by
a convolution layer and a sigmoid layer, split F t

w into echo-independent feature
F t
i and echo-dependent feature F t

d in the wavelet domain by Eq. (1), where ⊙
denotes the Hadamard product and iDWT denotes the inverse DWT.

F t
i = iDWT(Mt ⊙ F t

w), F t
d = iDWT((1−Mt)⊙ F t

w) (1)

Echo-independent Feature Fusion. To obtain robust and consistent recon-
struction across multi-echo images, we fuse echo-independent features {F 1

i , . . . , F
T
i }

from T echoes. Specifically, we design a feature fusion module that adaptively
fuses spatial structures across multiple echos. First, all features are concatenated
and then processed by a convolutional layer to generate T spatial attention
maps {αt}Tt=1. These T maps are then normalized via softmax along the channel
to adaptively weight the contribution of each echo’s anatomical features. The
weighted features are summed to produce an initial fused feature F init

i , while
a residual connection through a 1 × 1 convolution is added to F init

i , yielding
the final fused feature Fi that preserves consistent anatomical structures. The
processes are formulated in Eq. (2) and (3).

{αt}Tt=1 = Softmax
(
Conv

(
Channel Concat(F 1

i , F
2
i , . . . , F

T
i )

))
(2)

Fi = Conv1×1

(
Channel Concat(F 1

i , F
2
i , . . . , F

T
i )

)
+

T∑
t=1

αt ⊙ F t
i (3)

Echo-dependent Decoupling Loss. To preserve the echo-dependent informa-
tion of each echo image, e.g., contrast information, we propose an echo-dependent
decoupling (ED) loss as depicted in Fig. 1 (d). Specifically, the ED loss randomly
rearranges the echo-independent features (i.e., F 1

i to FT
i ) and constructs new T

paired combinations. The re-ordered combinations are enforced to generate the
same image as the corresponding ground-truth (GT) image. It is worth noting
that our proposed ED loss has great scalability and can be extended to arbitrary
amount of echo images. The ED loss is expressed as Eq. (4), where Ît is the t-th
reconstructed echo image with λ1 being a tunable hyperparameter.

LED =

T∑
t=1

[∥Ît − GTt∥2 + λ1LSSIM(Ît,GTt)], (4)

Contrastive Decoupling Loss. To explicitly perform decoupling and align-
ment for efficient fusion, a contrastive decoupling (CD) loss is designed to clus-
ter the echo-independent features {F t

i }Tt=1 (i.e., positive pairs) and push the
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echo-dependent features {F t
d}Tt=1 apart (i.e., negative pairs). Specifically, all the

{F t
d}Tt=1 and {F t

i }Tt=1 as well as the fused feature Fi are first flattened and
normalized with L2 norm. Thanks to the CD loss, we can regularize the fea-
ture space according to MR imaging priors, facilitating the decoupling between
echo-independent and echo-dependent features while promoting alignment across
echo-independent features. The total CD loss can be expressed as:

LCD =
1

T (T − 1)

∑
p̸=q

cos(F p
d , F

q
d ) +

1

T

T∑
t=1

cos(F t
i , F

t
d)−

1

T

T∑
t=1

cos(F t
i , Fi) (5)

2.3 Physics-informed Network for Multi-parametric Mapping

Traditional parametric mapping is usually performed by Bloch equations, which
are highly sensitive to the quality and fidelity of the reconstructed multi-echo
MR images [11, 22] and hinders the end-to-end optimization of reconstruction
and mapping. Though there were attempts [11] introducing MLPs to imitate
nonlinear mapping, the mapping performance is limited by the learning capacity
of MLPs. In this work, we propose to apply more powerful network and integrate
physical priors from Bloch equations [22] to improve the mapping performance.

Bloch Equation-based Multi-parametric Mapping. The initial estimation
of T1 map (T1|init) and T∗

2 map (T∗
2|init) can be calculated by Eq. (6), where

TRN (N ∈ {1, 2}) is the repetition time. k is a physical parameter corresponding
to repetition time, flip angle, and the acquired MR signal. B1t is the transmission
radio frequency field, ∆TE is the difference of the echo times and ∆S is the cor-
responding signal difference. The above required parameters can be determined
analytically. More details can be found in [22].

T1|TRN
=

TR1

|kTRN
| · B1t

, T1|init =
T1|TR1

+ T1|TR2

2
, T∗

2|init =
−∆TE
ln |∆S|

(6)

Physics-informed Mapping Network. Based on the reconstructed echo im-
ages and Eqs. (6), we can yield the initial estimation of the maps Pinit = {T1|init,
T∗

2|init} by multi-echo fitting. These initial maps are concatenated with the re-
constructed echo images Iinit = {Itinit}Tt=1 and processed by a UNet [16] as shown
in Fig. 1 (b). In this way, our PIMN bridges data-driven learning and physics-
informed constraints for multi-parametric MRI, resulting in more robust and
physically plausible mapping than solely data-driven or physics-driven estima-
tions. Moreover, we can easily combine the PIMN with off-the-shelf multi-echo
reconstruction methods for multi-parametric mapping as demonstrated in the
experiments.

2.4 Loss Function

The total loss consists of three parts, including the multi-echo reconstruction
loss in Eq. (7), feature decoupling loss in Eq. (8), and multi-parametric mapping



6 Dan et al.

loss in Eq. (9). We train our method in an end-to-end fashion, thus the total loss
is summarized as Eq. (10), where λ1, λ2, λ3, and λ4 denote hyper-parameters
used to balanced different losses, and are empirically set to 0.5, 1, 0.1, and 2,
respectively.

LRecon = ∥Ifinal − IGT∥2 + λ1LSSIM(Ifinal, IGT) (7)
LDecouple = LED + λ2LCD (8)

LMap = ∥Pfinal −PGT∥2 + λ1LSSIM(Pfinal,PGT) (9)
Ltotal = LRecon + λ3LDecoupling + λ4Lmap (10)

3 Experiments

Dataset and Implementation Details. We evaluated our model on an in-
house complex-valued dataset acquired by MULTIPLEX (MTP) [22] based on a
3T scanner (uMR 890). The MTP is a gradient echo pulse sequence (GRE) with
following scanning parameters: FA1/ FA2=4◦/16◦, TR1/TR2=37.2 ms / 40 ms,
and six echo images per FA with TR1 (TE=3.86 ms) and TR2 (TE=3.86/ 8.95/
14.04/ 19.13/ 24.22 ms). Specifically, our dataset includes 42 subjects, with 12
echos per subject. The MRI scanning was based on a 64-channel head coil with a
voxel size of 0.823×0.823×2mm3 and slice matrix size of 231×272×64. To bal-
ance computation cost and reconstruction efficiency, we center-cropped the slices
into 224 × 256 (50 slices per subject). The ground truth multi-coil multi-echo
images and parametric maps are from vendor software. Our model inputs the
coil-combined data using sensitivity maps calculated by ESPIRIT [18]. The 42
subjects were randomly split into subsets of 28, 4, and 10 subjects, corresponding
to 1400, 200, and 500 slices for training, validation, and testing, respectively. To
quantitatively assess performance, the following experiments apply two widely-
used evaluation metrics, SSIM and PSNR. All our experiments were based on
NVIDIA A100 GPUs (with 80GB RAM) and the Pytorch framework. Moreover,
we applied the AdamW optimizer and trained the model for 300 epochs with
mini-batch size set to 2 and learning rate set to 1× 10−3. In this work, we uti-
lized the encoder E and decoder D from MIMOUNet [3,12] to extract multi-stage
features and applied our WD module in each stage. Given the trade-off between
training efficiency and reconstruction accuracy, RU’s cascaded number N was
set to 2.

Quantitative Comparison with State-of-the-Art Methods. Two represen-
tative MRI reconstruction methods are compared, including MANTIS [9] and
SRM-Net [11]. Also, to assess the generalization capacity of our method, we ex-
tend a state-of-the-art (SOTA) multi-echo reconstruction method, JUST-Net [7],
with our PIMN. The quantitative comparison with the existing SOTA methods
on our dataset is summarized in Table 1, where our WDPM-Net consistently
presents promising SSIM and PSNR under varied accelerating factors. For in-
stance, our WDPM-Net outperforms the second best JUST-Net [7] by 3.62% in
SSIM, for 4× acceleration. These quantitative results on varied AFs demonstrate
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Table 1. Performance comparison of our model with existing methods on the dataset
with equispaced sampling masks. The best results are in bold. AF: acceleration factor.

AF Method Reconstruction PD T1 T2* Mapping
SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

×4

Zero Filling 0.5425 23.72 - - - - - - - -
MANTIS [9] - - 0.7092 22.74 0.7629 27.20 0.9005 30.98 0.7909 26.97
SRM-Net [11] 0.8548 31.26 0.8153 22.96 0.7405 26.72 0.9047 31.46 0.8201 27.05
JUST-Net [7] 0.9157 32.67 0.8575 23.32 0.7785 27.32 0.8790 28.76 0.8383 26.47

Ours 0.9311 34.37 0.8990 24.08 0.8088 28.34 0.9157 31.46 0.8745 27.96

×8

Zero Filling 0.4424 20.97 - - - - - - - -
MANTIS [9] - - 0.6827 20.90 0.7061 25.80 0.8821 29.59 0.7570 25.43
SRM-Net [11] 0.8316 30.48 0.7979 22.06 0.7286 26.36 0.8992 31.20 0.8086 26.54
JUST-Net [7] 0.8584 29.24 0.8329 22.63 0.7409 26.26 0.8630 29.58 0.8123 26.16

Ours 0.8766 30.57 0.8586 23.51 0.7566 27.07 0.8939 29.95 0.8364 26.84

that our WDPM-Net outperforms the existing benchmark methods significantly,
which is highly attributed to the efficacy of our proposed decoupling-driven re-
construction and physics-informed mapping framework. Also, the performance of
the JUST-Net equipped with our PIMN demonstrates the desired plug-and-play
attributes of our PIMN.
Qualitative Comparison with State-of-the-Art Methods. Furthermore,
we visually compared the investigated methods on the testing dataset and illus-
trated the results in Fig. 2. The first row presents the GT and the reconstructed
images using different methods. The second row shows the corresponding error
maps, and the third row shows the zoom-in views of the ROI. From the error
maps, we can see that our method performs best among all the comparison
methods on both multi-echo reconstruction and parametric mapping, respec-
tively. Particularly, as evident in the regions pointed out by the yellow arrows,
our reconstructed images contain more detailed and clearer tissue structures
as the zoom-in views depict. Visual inspection coincides with the quantitative
measures, revealing the clinical potential of our method.

Table 2. Ablation study with 4× acceleration and equispaced sampling for the three
main components of our WDPM-Net, including the WD module, decoupling loss, and
physics-informed mapping.

WD Module Decoupling loss Physics-Informed Reconstruction Mapping
SSIM PSNR SSIM PSNR
0.8942 33.13 0.8074 26.92

✓ 0.9281 34.16 0.8379 27.30
✓ ✓ 0.9300 34.27 0.8570 27.69
✓ ✓ ✓ 0.9311 34.37 0.8745 27.96

Ablation Study. In this section, we evaluated the efficacy of the three key
components in WDPM-Net by gradually adding the components. The experi-
mental results are in Table 2, where the models equipped with all components
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Fig. 2. Visual comparison of different methods on the test data with 4× equispaced
sampling. The yellow boxes are shown in close-up views, and the reconstruction error
maps of different methods are highlighted by the yellow arrows. The cross symbols
indicate unavailable results.

perform the best, indicating that the components can collaboratively enhance
overall reconstruction and mapping performance.

4 Conclusion

In this paper, we have presented WDPM-Net, a novel decoupling-driven and
physics-informed mapping network. Different from the existing multi-parametric
mapping methods, we propose to decouple the features of multi-echo images into
echo-independent and echo-dependent ones by a novel Wavelet-driven network
and also elaborately designed decoupling losses. Thus, multi-echo information
can be more efficiently exploited and fused. Furthermore, we propose to in-
tegrate Bloch equation as physical priors into the multi-parametric mapping
network, which enhances the mapping robustness and reliability. Experimental
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results on our in-house dataset demonstrate that our method outperforms the
state-of-the-art methods quantitatively and qualitatively, establishing a promis-
ing benchmark for accelerated multi-parametric MRI.
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