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Abstract. Coronary artery calcification (CAC) is a powerful indicator
of cardiovascular disease. Cardiac CT angiography (CCTA) has signifi-
cant advantages in detecting CAC. However, since the image quality of
CCTA can be compromised by cardiac motion or imaging equipment,
and the contrast between CAC and surrounding tissue is low, accurate
assessment of CAC remains a significant challenge. To address this issue,
we propose a model (CAC-Net) for the comprehensive evaluation of CAC
to fully exploit the characteristics of clinician annotations. First, inspired
by the clinical annotation process, where doctors determine the subject
based on boundaries, we propose a cross-frequency regulator module.
This module models the interaction between high and low frequencies to
distinguish the CAC body and its edges, thereby enhancing edge per-
ception. Then, building on clinicians’ anatomical prior knowledge that
CAC is confined within coronary arteries, we introduce a geometric prior
module to encode their topological relationship, effectively reducing false
positives. In experiments, our proposed method is compared with existing
state-of-the-art methods on two CAC datasets. The results demonstrate
that: (1) our method significantly improves CAC segmentation perfor-
mance, as evidenced by a higher Dice score compared to U-Net (0.731
vs. 0.659); and (2) it ensures consistency in clinically relevant indicators,
including calcium scores.

Keywords: Coronary Artery Calcification Segmentation - Frequency
Learning - Geometric Priors Constraints - CCTA.
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1 Introduction

Cardiovascular disease (CVD) is the leading cause of mortality worldwide, with
coronary artery calcification (CAC) as a key predictor [22]. Coronary CT angiog-
raphy (CCTA) best visualizes CAC, making accurate assessment crucial for CVD
prevention [8]. However, manual CAC evaluation is time-consuming, expertise-
dependent, and individual heterogeneity [8]. Thus, efficient automated segmen-
tation is essential to streamline diagnosis and support Al-assisted analysis [25].
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Fig.1: The process of comprehensively evaluating CAC and the challenges of
CAC segmentation

Figure 1(A) illustrates a fully automated CAC analysis pipeline for CCTA.
The primary challenge in automation lies in CAC segmentation. Clinical ex-
perts rely on both local intensity features and contextual dependencies when
interpreting CCTA images (Figure 1(B)). Locally, CAC appears as high-density
bright regions, strictly confined to coronary arteries. Traditional manual review
leverages these geometric and semantic priors for accurate identification. Earlier
methods, including support vector machines [24] and decision trees [20], were
applied to CAC detection in calcium scoring CT but are unsuitable for CCTA
due to their reliance on a fixed 130 HU threshold. In CCTA, distinguishing CAC
from attenuating cavities requires a more adaptive approach [25]. Deep learning
methods have advanced CAC segmentation, with prior work leveraging Unet [1],
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SegNet [2], and 3D CNN-based approaches [28,16]. Recently, transformer-based
architectures have further improved segmentation performance [17,15].

Despite these advancements, challenges remain: 1) CAC intensity in CCTA
varies significantly, complicating differentiation from background structures. Prior
methods [9,28,11,4] enhance grayscale contrast but often ignore contextual cues,
reducing robustness against noise and contrast agent interference. 2) Many ap-
proaches [6,21,13,17] lack geometric and semantic priors, leading to increased
false positives in CAC segmentation (Figure 1(B)). 3) Existing methods often
provide image-based classifications [9,12] but lack precise volume and location
information, limiting clinical applicability.

To address these limitations, we propose CAC-Net, which mimics clinicians’
annotation process by first locating CAC within coronary arteries and then refin-
ing its boundaries for improved segmentation accuracy. The main contributions
of this work are: @ A cross-frequency conditioner module (CFC) models the in-
teraction between high- and low- frequencies to represent the CAC body and
its edges, effectively simulating how clinicians determine the structure based on
boundaries. ® A geometric prior module encodes the topological relationship be-
tween the coronary arteries and CAC, simulating clinicians’ anatomical prior
knowledge that CAC is confined to the coronary arteries, thuss reducing false
positives. ® A comprehensive evaluation across pixel-, image-, and lesion-level
metrics, assessing segmentation accuracy and clinical relevance, including cal-
cium scoring.

constraints.
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Fig. 2: Overview of the proposed method.
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2 Methods

As illustrated in Figure 2, the proposed network adopts an encoder-decoder
structure similar to 3D U-Net. To enhance the CAC boundary detail percep-
tion, we introduce the cross-frequency conditioner (CFC) module. Additionally,
a geometric prior module is designed to fully leverage the spatial relationship
between CAC and coronary arteries.

2.1 Cross-frequency Conditioner Module

Frequency disentanglement. Segmenting CAC in CCTA is challenging due
to contrast agent interference. To improve accuracy, we simulate clinicians’ an-
notation habits by emphasizing CAC edge regions. To tackle this, we introduce
a frequency unwrapping module (Figure 2), which applies high-pass and low-
pass filters to decompose input features in the frequency domain. In practice,
low-level features capture fine-grained details, beneficial for high-quality seg-
mentation. Following [26], we transform the input image X € R**"*d into
multi-scale encoder features E € RC* 15X 1515, The frequency disentanglement
module then performs a 3D FFT to convert F to the frequency domain, splitting
it into high-frequency (E}) and low-frequency (E;) components:

By = { (FE)uos, P42 <uyv,2 < HEEA
0, others 1
o _Jo. U,Z’,Z <uw,z< 3><(U47V,Z) . (1)
h (F(E))uvz, others
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Fig. 3: Overview of the Geometric Prior Module.

Cross-frequency interaction. To refine segmentation, we propose a cross-
frequency conditioner module leveraging frequency-aware attention to suppress
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irrelevant features. The attention weights Aj, and A; are computed using linear
transformers and normalized via a sigmoid function:

{ A =0 (Cix1 (Ei]|6r))

A =0 (Cix1 (Eplir))’ 2)

where C;«1 represents a 1 x 1 convolution, and #;, 8, are learnable parameters
for E; and Ej. CCTA images can be decomposed into low-frequency smooth
structures and high-frequency fine details. Since CAC segmentation relies on
body and edge information, we define:

Epet = F~1 (A x Ey)
edg _ -1 ) (3)
El =F ((1 — Ah) X Al X El)

where F~! denotes the inverse 3D FFT, converting spectral features back to
image space.

Feature Alignment. Frequency disentanglement can introduce spatial mis-
alignment between the extracted frequency-sensitive features and original en-
coder features, degrading segmentation performance. To address this, we intro-
duce a feature alignment module for adaptive feature fusion (Figure 2). It con-
sists of two deformable convolutions [7] (Deform_Convl aligns D?°¢ with Dfdg
by computing an offset map Ap and Deform Conv2 refines the fused features):

AD = COI’IV3><3 (DEOd ® Dledg)

: 4
E}; = De_ Convyyxs (De (Ap x DP) @D g E) @

where ® denotes concatenation, @ represents addition, and De denotes de-
formable convolutions. The final fused feature representation is E' = E, + E;c
This approach integrates frequency-domain insights while preserving CNN-based
spatial cues, ensuring accurate CAC segmentation.

2.2 Geometric Prior Module

Geometric Interactions Constraint. Although frequency-domain analysis
helps distinguish CAC and distractors from the background, their structural
similarity leads to high false positives in segmentation. To address this, we sim-
ulate the prior knowledge of clinicians that plaques are located in coronary ar-
teries (Figure 3) and propose topological interaction constraints to model this
relationship, effectively reducing false positives. Specifically, we define four bi-
nary masks: plaque segmentation mask Gp, coronary artery mask Guv, plaque
prediction mask Pp, and coronary artery prediction mask Pv. To quantify the
alignment between predicted plaques and real vessels, we define geometric prior
accuracy (Tprec) and geometric prior sensitivity (Tiens) as:

. 5
Tses (Gp;Pv) = M ( )

P,NG,
{Tprec (PP’GU) = | |]gp\ ‘
|Gyl
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Geometric-prior Loss. A high T}, indicates a tendency for false positives,
while a high Tge,s suggests potential false negatives. To mitigate these errors, we
maximize both metrics by defining the geometric-prior loss Lg, as their harmonic

mean:
Tprec (Ppa Gv) X Tsens (Gpa Pv)

. 6
Tprec (Pp7 Gv) + Tsens (Gpa P’U) ( )
This loss function enforces topological consistency, improving segmentation

precision. To further refine predictions, we combine it with standard soft Dice
and cross-entropy losses, resulting in the final objective function:

Lgp=2x

Ltotal = Lce + >\dice Ldice + )\gpLgpv (7)

where L., and Lg;.. are Cross-entropy and Dice losses, respectively, with weights
Adice and Agy, controlling their contributions.
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Fig. 4: Visualization of CAC segmentation results before and after utilizing coro-
nary artery containing CAC post-processing.

3 Experiments

3.1 Datasets and Data-processing

CAC-CTA dataset. This dataset comprises 150 patients from a top-tier Chi-
nese hospital, encompassing 802 instances of coronary artery calcification (CAC),
with an average of 5.36 + 4.92 lesions per patient. CAC-CTA scans were acquired
using a uniform Siemens dual-source CT system under standardized protocols.
Patient demographics were recorded, with a mean age of 64.45 + 11.44 years.
The datasets were independently and anonymously annotated by cardiologists
and radiologists using 3D Slicer. Annotation consistency was assessed using Dice
similarity, with discrepancies rechecked. For training and evaluation, 80% of the
images were used for training, and 20% for testing.
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Table 1:  Quantitative comparison and Cross-validation result

No Post-process Post-process No Post-process Post-process
Method SE PE  Dice |SE PE Dice [SE PE Dice [SE PE  Dice
Quantitative comparison result Cross-validation result
Unet [5] 0.627 0.357 0.385 |0.627 0.774 0.659 {0.603 0.323 0.231 |0.603 0.754 0.629
Vnet [19] 0.646 0.412 0.415 |0.646 0.756 0.672 {0.625 0.336 0.408 |0.625 0.736 0.651
GLIA-Net [3] 0.655 0.467 0.475 |0.655 0.77 0.714 {0.637 0.409 0.454 |0.637 0.753 0.693
nnUnet [14] 0.76 0.685 0.712 |0.76 0.782 0.725 |0.725 0.696 0.713 |0.725 0.761 0.707

U-Transformer [18]]0.656 0.481 0.481 |0.656 0.702 0.698 [0.641 0.427 0.467 |0.641 0.762 0.672
SwinUNETR [10] |0.671 0.531 0.581 [0.671 0.531 0.718 [0.651 0.527 0.618 |0.651 0.511 0.704

nnformer [27] 0.721 0.701 0.612 |0.721 0.752 0.719 {0.695 0.559 0.709 |0.695 0.743 0.698
CACer [15] 0.767 0.699 0.715 |0.767 0.758 0.727 |0.731 0.713 0.717 |0.731 0.759 0.719
Our 0.784 0.759 0.725|0.784 0.763 0.731|0.754 0.737 0.734|0.754 0.756 0.731

Orcascore dataset. We use the MICCAT 2014 Challenge cardiac CT dataset
[23], containing scans from four hospitals using different CT scanners. Each
patient has both non-contrast CT and contrast-enhanced CCTA, with 32 pa-
tients annotated for CAC. CCTA segmentation results are validated against
non-contrast CT.

Data-processing of CAC dataset. CTA images are resampled to 0.5 mm
thickness. A -224 HU to 600 HU threshold is applied for coarse lung segmenta-
tion, followed by seed-filling for refinement. The lung mask is subtracted from
the original image to reduce noise and improve CAC segmentation.

3.2 Implementation Details and Evaluation Metric

Network parameters. All experiments were conducted using Python 3.8 and
PyTorch 1.8% on NVIDIA Tesla P100 GPUs. The model is optimized using SGD
with an initial learning rate of 0.01, weight decay of 2e-4, and ReduceLROn-
Plateau scheduling (coefficient 0.5, patience and cooldown 3, minimum learning
rate le-8). During training, a 128 x 128 x 128 block is randomly cropped from
CCTA images, normalized, and fed into the network. The batch size is set to 2,
and each experiment runs for 120 stages. The final segmentation is obtained by
binarizing the model’s probability map using a 0.5 threshold.

Evaluation metric. We assess performance in two aspects: (1) Segmenta-
tion Accuracy (sensitivity (SE), precision (PE), and Dice ) and (2) Geometric
Prior Influence, evaluated by comparing results before and after post-processing
with coronary artery masks.

3.3 Comparison with State-of-the-Art Method

Comparison with SOTA Method. As shown in Table 1, post-processing
improves Dice scores by reducing false positives through geometric priors, but
precision (PE) does not reach SOTA. This occurs because post-processing, while
eliminating false positives outside the coronary arteries, may also filter out small

S https://pytorch.org/


https://pytorch.org/

8 W. Jiang et al.

true CAC regions, slightly reducing precision. Figure 4 further demonstrates that
our method better preserves fine CAC structures compared to others. Overall,
our model achieves higher segmentation index, demonstrating the effectiveness of
the cross-frequency conditioner module and geometric prior module in improving
CAC detection.

Generalization. This paper employs cross-validation to evaluate the model’s
generalization. The CAC-CTA dataset was used for training, while the OrcaScore
dataset served as the test set. As shown in Table 1, our model outperforms
nnU-Net, nnFormer, andCACer, achieving consistently higher scores across all
metrics, both before and after pre-processing.
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Fig.5: The Bland-Altman plot compares the automatically acquired CAC vol-
umes from the CCTA segmentation method with reference annotations in CCTA
or CT.

Per Patient CAC Quantification. For each patient, cardiologists and radi-
ologists recorded CCTA volume and mass scores based on the Agatston score,
which our CAC-Net also predicts. The Bland-Altman plot in Figure 5 illus-
trates the agreement between predicted and true Agatston scores. Orcascore
closely matches the CT gold standard, while on the CAC-CTA dataset, auto-
matic scores tend to be higher than the reference (+3.05 deviation). Conversely,
on the Orcascore dataset, automated scores are lower, with a consistency limit
of -5.16.

3.4 Ablation Study

To evaluate the effectiveness of each component within the proposed model, we
performed an ablation study on the CTA-CAC dataset. As shown in Table 2, each
component significantly improves segmentation performance, demonstrating the
effectiveness of both the cross-frequency conditioner and geometric prior module.
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Table 2:  Ablation study of our model on CAC-CTA dataset. ("ONE" de-
notes one-class task. "TWOQO" denotes two-class task. "FAS" denotes the cross-
frequency conditioner module, and "TP" denotes TP _LOSS).

No Post-process Post-process
One Two FAS TP —op =55 Dice SE PE Dice
v 0.627 0.357 0.385 0.627 0.774 0.659
v v 0.676 0.631 0.542 0.676 0.784 0.716
0.749 0.603 0.625 0.749 0.706 0.712
v 0.745 0.664 0.668 0.745 0.749 0.722

v 0.757 0.727 0.713 0.757 0.751 0.726
v v 0.7840.759 0.725 0.784 0.763 0.731

ANENENEN

4 Conclusion

We propose a novel CAC segmentation model, leveraging CAC-Net to assess
token connectivity and learn instance-specific attention patterns. Additionally,
we introduce instance-aware guided semantic learning in the Fourier domain
to enhance long-range feature interactions. Our model achieves state-of-the-art
performance on CAC tasks, enabling accurate, automated CAC identification
and quantification in CCTA. This advancement could eliminate the need for
separate CSCT scans, reducing patient radiation exposure.
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