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Abstract. Bronchoscopy is a minimally invasive procedure for diagnos-
ing and treating lung conditions, but accurate navigation remains chal-
lenging and resource-intensive due to reliance on preoperative imaging,
sensor-based tracking, and the low-saliency visual environment of the
airways. To address these limitations, we propose a novel Navigational
Bronchoscopy framework that enables real-time guidance and repeatable
interventions without requiring external sensors or CT scans, making it
particularly suitable for mechanically ventilated patients in critical care
units with limited access to preoperative imaging. Our approach lever-
ages deep learning, combining airway landmark recognition with deep
visual features and a Vision Transformer (ViT)-based pose regression
network to track bronchoscope motion. The framework is deployed on
a commercially available bronchoscope and validated through trials in
both a phantom lung model and a mechanically ventilated ex-vivo hu-
man lung. Results show that our ViT-based model achieves the lowest
pose estimation errors among tested methods. Furthermore, in ex-vivo
trials, our system successfully guided the bronchoscope to predefined tar-
gets, achieving high similarity scores for reliable landmark identification.
These findings highlight the feasibility of our approach for real-world
clinical applications.
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1 Introduction

Bronchoscopy is a diagnostic and therapeutic tool in critical care, used for ex-
amining the airways with a flexible tube equipped with an endoscopic camera.
Common interventions include bronchoalveolar lavage and biopsy. However, in
critically ill and mechanically ventilated patients, airway sampling is particularly
challenging due to the absence of navigation tools or preoperative images, mak-
ing procedures like Bronchoalveolar Lavage (BAL) [8], shown in Fig. 1, difficult
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Fig. 1. (a) Schematic of Bronchoalveolar Lavage (BAL) in critical care. Saline is intro-
duced via the bronchoscope to wash the airways, and a suction pump retrieves the fluid
for analysis. The lack of repeatability in re-sampling or targeted therapy delivery limits
its clinical impact. We propose a navigation platform to assist operators in accurately
returning to the same location for re-sampling or localized therapy. (b) Experimental
setup using ex-vivo human lungs and a commercial bronchoscope (Ambu aScope 4,
Ambu Ltd.) to simulate BAL.

to accurately repeat and interpret. The lack of repeatability for resampling or
local therapy delivery further limits its impact on patient management [13].

Navigational Bronchoscopy (NB) systems, such as Illumisite (Medtronic,
USA) [5], and robotics-assisted platforms like Ion (Intuitive Surgical, USA) [18],
Monarch (Auris Health, USA) [19], and Galaxy (Noah Medical, USA) [21], have
advanced lung cancer diagnosis by integrating sensors (e.g., electromagnetic
tracking, optical fibers) with pre- or intra-operative imaging for precise guid-
ance. However, these systems are unsuitable for critical care, where imaging is
often unfeasible, and robotic platforms are not designed for ICU use. As a result,
NB remains largely confined to cancer and infection diagnostics outside critical
care.

Vision-based methods, estimating bronchoscope pose from sequential im-
ages, offer an alternative to sensor-based navigation. However, feature-based
approaches [11,20] struggle due to the lack of salient features in bronchoscopic
videos [4,24]. Learning-based methods, including CNNs [10,25] and GNNs [6],
show promise in endoscopy but remain unvalidated in bronchoscopy due to fea-
ture sparsity, occlusions, and motion blur.

Supervised [1,22] and self-supervised CNN models [9,16] have been developed
for direct pose estimation but struggle with reliable tracking in real human
lungs [12]. The Probabilistic Airway Navigation System (PANS) [23] improves
6-DOF localization using depth-based motion inference and bronchial semantic
landmark detection but relies on preoperative airway segmentation, limiting its
applicability in critical care.

Our main contribution is a novel NB framework designed for mechanically
ventilated patients in critical care, operating without preoperative imaging. CT-
based NB platforms are prone to errors from patient and lung motion—such as
breathing and peristalsis—which can shift bronchial structures by up to 25 mm
per breathing cycle [14]. To address this, we leverage a vision foundation model
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for trajectory generation and introduce visual landmark-based loop closure, en-
abling accurate and repeatable access to sampled regions. This facilitates reliable
re-sampling and targeted drug delivery following infection or inflammation de-
tection. We validate our method using a phantom lung model (Fig. 3) and an
ex-vivo ventilated human lung (Fig. 1(b)). Although the bronchoscope is man-
ually controlled and landmark recognition enables loop closure, pose estimation
transforms recognition into actionable navigation by providing real-time direc-
tional context [23], especially in low-texture or distorted airway regions where
CT maps are unavailable. To our knowledge, this is the first NB pipeline devel-
oped for bronchoscopy in critical care without reliance on preoperative imaging.

2 Methodology
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Fig. 2. Navigational pipeline comprising four stages: (1) The operator inspects the
lungs, marking relevant landmarks or areas of interest. Visual features are extracted
from images and stored alongside tracked camera positions. (2) Extracted features are
clustered using K-Means to construct a Bag-of-Words (BoW) vocabulary. (3) Dur-
ing subsequent bronchoscopy rounds, the bronchoscope is guided through the lungs
while image features and camera pose are computed in real time. BoW vectors iden-
tify previously marked landmarks, enabling pose correction to reduce tracking error.
A navigation score provides feedback on proximity to the target location. (4) A pose
regression network, shown in the bottom right, is used in both exploratory and naviga-
tion rounds. It processes image pairs I;—1 and I, which are concatenated and passed
through a convolutional layer. The output is reshaped into patches and fed into a Vision
Transformer (ViT) followed by a feedforward layer to predict pose.
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Our navigation pipeline consists of three stages, illustrated in Fig. 2:

1. Exploratory Phase: The operator inspects the airways, marking land-
marks or areas of interest while tracking the pose of the bronchoscope. This
phase mirrors the initial round of critical care bronchoscopy, where the goal
is to sample from as many locations as possible.

2. Vocabulary Construction: A Bag-of-Words (BoW) visual vocabulary is
built from deep features extracted from recorded frames.

3. Navigation Phase: During resampling or drug delivery, real-time pose pre-
dictions and landmark recognition guide the bronchoscope. A navigation
score provides feedback on target proximity, with landmarks serving as vi-
sual anchors to minimize pose drift.

The backbone of the NB pipeline in both exploratory and navigation phases is
a Visual Foundation Model, specifically DINO, a pre-trained Vision Transformer
(ViT) [3]. ViT is utilized for:
(i) Camera Pose Prediction: The predicted camera pose is visually displayed to
the operator during both the exploratory and navigation phases, aiding guidance.
(i) Deep Feature Extraction: Feature maps extracted from camera frames are
stored as a Bag-of-Words (BoW) after the exploratory phase and later used
to minimize pose prediction error and drift during navigation. The following
subsections provide further details on these steps.

2.1 6D Pose Estimation

To achieve real-time bronchoscope pose tracking, we fine-tune a ViT for relative
camera pose regression, as illustrated in Fig. 2. The network processes consecu-
tive frames (I;—1, I;) and predicts a 12-dimensional pose vector:

APtql,t = (ARgl,m Art(il,t)7 (1)

where ARtC_Lt and Arf 1+ represent the predicted rotation matrix and the
translation vector between the time steps t — 1 and ¢. The network is initialized
with pre-trained weights [3] and fine-tuned on publicly available bronchoscopy
sequences with ground truth poses [12]. Each training sample consists of two con-
secutive frames and their relative transformation, with annotations derived from
an electromagnetic tracking system used only during training, not at inference.

A weighted loss function supervises translation and rotation simultaneously.
Translation loss is computed using Mean Squared Error (MSE) as L1 = £ 2?21 (AT;—

ATZ-)Q, where AT and AT are the predicted and target translations, respectively.
For rotation loss, we use a Procrustes orthonormalization approach [2], mapping
a 3 x 3 matrix onto the closest valid rotation matrix in SO(3) by minimizing the
Frobenius norm difference, ensuring continuity and differentiability:

AR = i R — M]|[? 2
argRelggl(S)H |75 (2)
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The final rotation error loss function is measured using quaternion-based angular
difference: R
Lr=1-q,(ART'AR)?, (3)

where ¢(-) maps the rotation matrix to a unit quaternion, with w representing
the scalar term. This mapping ensures continuous optimization during training.
We note that the pose regression model operates separately from the ViT used
for image feature extraction in the next stage.

2.2 Landmark Recognition and Pose Refinement

During the exploratory phase, a pre-trained ViT [3] extracts deep feature rep-
resentations from camera frames. The final transformer layer encodes frame-
specific information, which is utilized for landmark recognition. Unlike tradi-
tional vision-based SLAM algorithms [7,15] that rely on handcrafted local feature
descriptors, our approach employs a deep-learning-based Bag-of-Words (BoW)
model. Specifically, deep image features extracted by ViT are clustered using
the K-Means algorithm, where the resulting cluster centers define a landmark
set: L = {v; | I € N,[ generation of airway branch}, where each landmark v,
corresponds to a feature descriptor associated with a specific airway branch.
The landmarks recorded in exploratory phase serve as reference points for
pose refinement during navigation in serial bronchoscopy, where feature vectors
from incoming frames are extracted using the same ViT model and mapped
to their closest K-Nearest Neighbor (KNN) match within the BoW vocabulary.
This process generates a histogram representation of the frame’s BoW vector.
Landmarks are identified by computing the normalized dot product similarity
between the current frame vector v; and reference landmark vectors v;:

V¢ - V]

s v = Tl

Vv, € L. (4)
This similarity metric ensures robust landmark matching and triggers pose re-
finement when the similarity exceeds a threshold, thereby facilitating loop closure
and drift correction in pose estimation.

To enhance robustness, similarity scores are averaged across matching frames,
while the lowest 10% of values are excluded to mitigate outliers. Furthermore,
navigation accuracy is quantified using a dynamic navigation score (S;), aggre-
gating weighted maximum similarity scores across all identified landmarks:

L
S = Z w; max s(ve, vi), (5)

1=0
where S; represents the navigation score at time ¢. The weight w; assigns expo-
nentially increasing significance to landmarks detected later in the procedure,
ensuring a higher influence on pose refinement. The weights are normalized that:

2l—L

==z
Do W

(6)

wy
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Table 1. Comparison of different end-to-end pose regression methods.

trans Tot trans Tot
Method | Params (M) RPE RPOE ATE ATOE
(mm) (cm)
16 27.9 0.120 + 0.112 | 0.85 £ 0.58 | 7.10 £ 1.30 | 126.80 £ 25.50
22 43.6 1.790 £ 1.510 | 11.95 £ 9.85 | 8.30 £ 2.50 | 126.10 + 28.00
Ours 86.4 0.095 + 0.070 | 0.45 £+ 0.32 | 2.10 £ 0.90 | 19.00 + 5.90

The predicted pose is used to visualize the bronchoscope’s trajectory, while
detected landmarks provide loop closure corrections. When a valid landmark
match is confirmed, the trajectory is refined by computing the relative pose
transformation between the current frame and the closest matched landmark.
The pose model then estimates the transformation update, which is propagated
backward using the interpolation method from [17], stopping at the nearest pre-
viously matched frame or the trajectory’s starting point. This approach reduces
accumulated drift and enhances pose consistency during serial bronchoscopy.

3 Experiments

To validate our navigation framework, we conducted bronchoscopy trials in two
settings: a phantom lung model (Bronchoscopy training model, Koken Co.) and
a mechanically ventilated ex-vivo human lung. The phantom model served as
a baseline for assessing feasibility and identifying hyper parameters, including
threshold for land mark detection, while the ex-vivo lung trials tested the sys-
tem under anatomically realistic conditions. In our experiments, the inference
pipeline achieved approximately 20Hz on a standard RTX 3060 GPU, which is
sufficient for real-time clinical guidance during bronchoscopy procedures. Trials
lasted approximately 12—-15 minutes, reflecting the time needed for initial explo-
ration, landmark acquisition, and repeat navigation. Drug delivery was deferred
to isolate navigation performance.

We conducted three trials in a phantom lung, each targeting a different airway
region (Fig. 3a). During the Exploratory Phase, an expert bronchoscopist nav-
igated the bronchoscope to predefined targets in lobes, simulating BAL. Land-
mark locations were recorded at each branching level. After bronchoscopy, cap-
tured frames were processed into feature maps to construct a visual vocabulary.

We first evaluated our pose prediction network using this data set, comparing
it with state-of-the-art methods. The 6D ground truth pose was collected using
the Aurora electromagnetic (EM) tracking system (NDI, Canada). We report
the relative pose error (RPE), which measures frame-to-frame accuracy, and
the absolute trajectory error (ATE), which assesses cumulative drift over entire
trajectories. Table 1 summarizes the results, showing that our ViT-based model
achieves the lowest translation and rotation errors among the tested methods.

Next, we evaluated the NB framework as a whole during the Navigation
Phase, where the bronchoscope was guided toward predefined targets from the
exploratory phase. To simulate realistic conditions, the phantom lung was cov-
ered, preventing operators from seeing the lung anatomy. They relied solely on
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Fig. 3. (a) Phantom lung model at three airway target locations. The Target locations
identified during exploratory phase are shown. (b) Landmark scoring during broncho-
scope navigation trials of the three phantom lung model experiments. (c) Pose predic-
tion results for phantom trials. From left to right: Camera pose during exploration for
target A; Camera pose during navigation, before and after pose correction for target
A; Initial and repeated paths of all three trials.

the endoscopic camera feed and navigation feedback including corrected pose
predictions and the navigation score in Eq. (5). Previously identified landmarks
were used to compute similarity scores, with a threshold of 0.7 indicating suffi-
cient proximity for pose refinement.

Fig. 3b shows that similarity scores exceeded the threshold at multiple time
points, ensuring reliable landmark identification at each bifurcation. Pose track-
ing results (Fig. 3c) illustrate camera pose tracking and trajectory refinement,
showing the initial bronchoscope path and recorded landmarks. The results
demonstrate that landmark-based pose correction significantly improves pose
prediction in repeated trials, enabling the operator to consistently reach all pre-
defined targets. Apparent off-lung paths in Fig. 3c and Fig. 4c are artifacts from
accumulated drift during pose integration, not navigation errors, as the overall
trajectory remains correct and is refined by landmark-based correction.

To assess system performance in a more realistic setting, we conducted three
trials in a mechanically ventilated ex-vivo human lung, each targeting a different
airway location in right lobe (Fig. 4a). A small bright fluosphere was deposited
near each target location (6th to 8th airway generations) to confirm successful
navigation in subsequent rounds. The trials followed the same three-phase nav-
igation procedure as in the phantom experiments. In all experiments, the NB
framework successfully guided a novice operator toward target locations. Fig. 4b
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shows the computed scores for the Navigation Phase of each trial, demonstrat-
ing the system’s ability to track progress toward intended targets. Similarity
scores exceeding 0.7 (as in phantom trials) were used to refine camera pose, with
corrected trajectories shown in Fig. 4c.
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Fig. 4. (a) Diagram of the ex-vivo lung segment explored during navigation trials,
with numbers indicating airway branching levels. Blue dots represent target locations
(fluospheres) at different branches. (b) Landmark scoring during navigation trials for
three ex-vivo lung experiments. (c) Pose prediction results for phantom trials. From left
to right: Camera pose during exploration for target C; Camera pose during navigation
before and after pose correction for target A; Initial and repeated paths for all trials.

Comparing the two experimental settings, bronchoscopy in the ex-vivo lung
was more challenging due to dynamic lung tissue and occlusions from secretions.
This is evident in varying locations of several branches (e.g., 1b and 6a) across
trials. Landmark similarity scores were generally higher in the phantom lung,
likely due to lower visual variability. In the ex-vivo lung, ventilation-induced
movement, tissue secretions, and camera smudging affected performance. Further
tuning of the navigation score may be needed for different clinical scenarios
or datasets. Future work could explore alternative scoring or post-processing
techniques to unify similar landmarks across trials, enhancing robustness.

Pose tracking accuracy could not be directly validated with ground truth in
the ex-vivo model due to interference between the lung ventilator and the mag-
netic tracker. However, inconsistencies on the trajectory scale suggest a discrep-
ancy between training data and the bronchoscopy sequences tested. In future
work, to mitigate cumulative drift, shared landmark registration across trials
could be implemented to construct a graph of visited landmarks for pose opti-
mization. This approach may enhance trajectory accuracy and support multi-
session navigation in real clinical applications.
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4 Conclusion

This study introduced a novel NB framework designed to overcome key chal-
lenges in bronchoscopy, including reliance on preoperative imaging, sensor limi-
tations, and the inherent difficulty of navigating feature-sparse airway environ-
ments. By leveraging vision foundation models, specifically adopted for (i) pose
regression, and (ii) deep image feature mapping, our method enables real-time
bronchoscope tracking and guidance for repeatable interventions. The results
of our ex-vivo human lung trials have validated the practical feasibility of our
NB framework for real-world applications in mechanically ventilated lungs. Fu-
ture work will focus on refining and expanding the NB framework. Key areas
for improvement include implementing automatic landmark detection, refining
landmark registration and adopting pose graph optimization techniques for more
robust and accurate navigation. Additionally, we plan to further investigate fail-
ure cases and implement adaptive hyperparameters to better handle anatomical
variability beyond the current static phantom-derived settings.
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