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Abstract. Data imbalance presents a significant challenge for the ap-
plication of federated learning in medical image analysis. To address
this challenge, we propose FedSDC, an innovative federated approach
designed to effectively tackle the issue of data imbalance, as well as het-
erogeneity in distributed federated learning environments. The proposed
FedSDC framework comprises a shared body network and multiple task-
specific head networks. By incorporating a shuffle-diversity collaborative
strategy, FedSDC effectively addresses data imbalanc and heterogene-
ity challenges while improving cross-client generalization. Furthermore,
training multiple heads under this strategy enables ensemble predictions,
which enhances decision stability and accuracy. To balance efficiency and
performance, FedSDC employs the sparse-head scheme during inference
phase. Extensive experiments on medical image classification tasks val-
idate that FedSDC achieves state-of-the-art results under imbalanced
and heterogeneous data conditions. The source code will be available at
https://github.com/wpnine/FedSDC.

Keywords: Federated Learning · Medical Image Classification · Het-
erogeneity.

1 Introduction

The emergence and rapid development of deep learning have revolutionized the
field of medical image analysis [14,3]. To ensure a deep neural network maintains
reliable performance and generalization when applied to diverse clinical centers,
an extensive collection of medical image datasets from multiple sources is needed.
However, in real-world scenarios, due to patient privacy and legal regulatory pol-
icy to data sharing, it is difficult to integrate patient data from multiple medical
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institutions. Different conventional centralized learning systems, federated learn-
ing (FL), has been proposed as a promising alternative technique for accessing
large-scale data information and training deep neural networks across hospitals
without accessing raw data [16,26,10].

Despite FL-based technology’s promising potential, a key challenge impeding
the further development of FL is data imbalance and heterogeneity [18,5] from
various medical centers, i.e., data with different distributions, formats, or struc-
tures across multiple sources or devices. For medical image data, imbalanced
label distribution (even missing some categories across hospitals) and image
heterogeneity are common issues [27]. These issues lead to different local models
being optimized toward distinct local objectives, resulting in divergent optimiza-
tion directions [25]. Consequently, aggregating these divergent local models to
obtain a robust global model becomes challenging. To empirically demonstrate
this issue, we conduct controlled experiments using the Matek-19 [17] dataset
divided into three clients, comparing model performance under both balanced
and artificially imbalanced conditions (created by selectively limiting three cat-
egories to simulate real-world data skew). As shown in Figure 1, conventional
approaches like FedRep [6] exhibit substantial performance degradation when
faced with inter-client categorical imbalances. This empirical evidence under-
scores the pressing need for adaptive strategies that can handle heterogeneous
data distributions in practical deployment scenarios.

Fig. 1. The experimental results compare the federated learning methods of FedRep
and our proposed FedSDC on the Matek-19 dataset, divided among three clients.

Solutions to address data imbalance and heterogeneity in federated learning
can be broadly categorized into generalized federated learning (GFL) and per-
sonalized federated learning (PFL) [7]. The former aims to construct a global
model, mitigating personal differences by imposing constraints on local train-
ing [11,12,29,20], modifying logits [13,30], adjusting the weights of submitted
gradients [24], or generating synthetic data [32,15]. In contrast, PFL focuses on
tailoring local models to adapt to the data or system of each client, placing
relatively less emphasis on locally missing classes and selectively sharing either
partial network parameters [6,2] or class prototypes [21] to minimize the im-
pact of personal characteristics [8]. In the context of automated medical image
classification, GFL is an ideal general solution. However, due to the severe im-
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pact of data heterogeneity, the aggregated global model may fail to achieve the
performance expected of the local models. On the other hand, PFL can better
fit the local data of all participating institutions, but the overall generalization
capability of individual local models is often inferior to that of a global model.
Both approaches have their advantages and disadvantages. Could the strengths of
these two methods be further combined to propose a federated learning approach
better suited for the task of automated medical image classification task?

In this paper, a novel heterogeneous federated learning method, FedSDC, is
proposed with a body and multiple heads for medical image classification tasks.
The Body is responsible for learning global data representations and serves as a
shared feature extractor following the standard GFL paradigm. In contrast, the
heads are designed to retain personalized information specific to each client’s
data and act as decision-makers for the final outputs. The training process
for the heads follows a designed shuffle-diversity collaborative strategy to pro-
mote generalization performance across clients for imbalanced data distribution.
Meantime, each head contributes to ensemble learning and enables more reliable
decision-making. The proposed FedSDC effectively blends the strengths of both
GFL and PFL, which combines both generalization and personalization. The
results demonstrate that FedSDC achieves outstanding performance under both
heterogeneous and non-heterogeneous data scenarios.

2 Methodology

2.1 Preliminaries

The standard formulation of federated learning involving N clients is expressed
as follows:

min
(m1,...,mN )∈ϱN

1

N

N∑
i=1

fi(mi), (1)

where fi represents the error function, while mi denotes the learning model
associated with the i-th client. The set ϱN signifies the feasible space of N
models. This framework operates within a supervised learning context, where
the data for each client i is derived from a distribution denoted as (xj , yj) ∼ Di.
The learning model mi is designed to map the input features xj to predicted
outcomes mi(xj) ∈ Y, which should ideally align with the true labels yj . The
error function fi is defined as the expected risk over the distribution Di:

fi (mi) := E(xj ,yj)∼Di
[ℓ (mi (xj) , yj)] . (2)

Here, ℓ serves as the loss function that quantifies the discrepancy between the
predicted label mi(xj) and the actual label yj .

2.2 Network Architecture

Figure 2 illustrates the architecture of FedSDC, a federated learning framework
designed to address categorical imbalance across clients while enhancing model
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Fig. 2. The overall architecture of FedSDC. During training, the server partitions the
model parameters uploaded by clients into two components: the body and the head.
It aggregates multiple bodies into a shared body (ϕ), shuffles the heads, and combines
each head with ϕ to form a complete model for each head. During testing, FedSDC
utilizes ϕ to extract features, which are then passed to the heads for ensemble prediction
with a major voting scheme.

robustness. The framework partitions each client’s model into two components:
a shared body network and a client-specific heterogeneous head. The shared
body ϕ employs a ResNet50 backbone to learn generalized cross-client feature
representations. To further amplify head heterogeneity, a Diversity mechanism
is incorporated into the head architecture: each heterogeneous head hi consists
of a two-layer fully connected (FC) network, where a dropout layer is inserted
between the linear layers to mitigate overfitting and promote structural diversity,
and the dimensionality of the first FC layer in hi is dynamically adjusted via
a client-specific compression factor ρi ∈ [0.4, 1]. This configuration not only
diversifies client-specific decision boundaries but also optimizes compatibility
with ensemble-based inference, improving overall testing-phase performance.

Specifically, at communication round t in the training phase (see Algorithm
1), all client models {mt

i}Ni=1 are uploaded to the center server. Each client model
mt

i undergoes dual-component decomposition:

mt
i → {ϕt

i, h
t
i}, (3)

where ϕt
i denotes the body network and ht

i represents the head network. In order
to enhance robustness and accelerate convergence under non-IID conditions, the
body networks ϕt

i
N
i=1 are aggregated using FedAvgM [9]:

vt ← βvt−1 +
∑N

i=1

|Di|∑N
j=1 |Dj |

∆ϕt
i, (4)

ϕt+1 ← ϕt − vt, (5)



FedSDC for Imbalanced Medical Image Analysis 5

where ∆ϕt
i is the weight of body update from the i-th client in t-th round and

β ∈ [0, 1] is the momentum parameter, which is empirically set to 0.5. Head
networks {hi}Ni=1 undergo client-wise permutation:

{ht+1
i }Ni=1 = Shuffle({ht

1, h
t
2, · · · , ht

N}). (6)

This randomized head reassignment strategy, termed Shuffle, is designed to pro-
mote exposure to diverse decision boundaries across clients. Reconstructed client
models combine the updated body network with permuted heads:

mt+1
i ← ϕt ◦ ht

i, (7)

where ◦ denotes the functional composition. Each client subsequently optimize
its local model through:

min
mi

E(xj ,yj)∼Di

[
ℓ(hi(ϕi(xj)), yj)

]
, (8)

Using Stochastic Gradient Descend (SGD) with learning rate η, where ℓ(·) repre-
sents the cross-entropy function. During the testing phase, FedSDC employs an
ensemble framework comprising a shared body network ϕT and multiple client-
specific heads {hT

i }Ni=1. The input x is first encoded into a generalized feature
representation via ϕT , which is then processed by all heads to generate head-
specific class probabilities pi = Softmax(hT

i (ϕ
T (x))); these predictions {pi}Ni=1

are aggregated via major voting to produce the final ouput ŷ. To optimize effi-
ciency and performance, a sparse subset of heads is dynamically selected for test-
ing based on validation-phase micro-F1 scores, retaining only the top γ ∈ [0, 1]
fraction (e.g., γ = 0.3 prunes 70% under-performing heads). Specifically, each
head is evaluated on the target dataset to obtain a micro-F1 score, and only
the top-performing heads are retained for ensemble prediction, thereby reduc-
ing computational overhead while preserving ensemble diversity and prediction
quality. In this paper, the FedSDC with sparse heads is termed FedSDC+.

3 Experiment

3.1 Datasets

In our experiments, we introduce three White Blood Cell datasets (Matek-19
[17], Acevedo-20 [1], and Bodzas-23 [4]) and one skin cancer dataset (HAM10000
[22]). We construct two federated scenarios to evaluate the performance:
IID: As shown in Figure 3-a, IID employs Acevedo-20 dataset that contains
independent and identically distributed (i.i.d.) data with identical label distri-
bution across clients. This dataset is split into 80% for training and 20% for
testing, with the training data evenly distributed across clients.
NIID: For non-i.i.d. data with imbalanced label distribution scenarios, NIID-
1(Figure 3-b) is created using HAM10000 dataset. The HAM10000 dataset is
sourced from two different regions and exhibits a significant imbalance. We fol-
low the data distribution setup in [28], where 30 samples per class are reserved for
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Algorithm 1 FedSDC
Input: N : the total number of clients, T : communication rounds, [D1, . . . ,DN ]: dataset

of each client

Server executes:
Initialize ϕ1,h1 = [h1

1, . . . , h
1
N ]

for round t = 1 to T do
for client i = 1 to N in parallel do

mt
i ← ClientUpdate(mt

i) // model sends to client for update
mt

i → {ϕt
i, h

t
i} // according to Eq.(3)

end
ϕ(t+1) ← FedAvgM({ϕt

1, . . . , ϕ
t
N}) // according to Eq.(4)

{ht+1
i }Ni=1 = Shuffle({ht

1, · · · , ht
N}) // according to Eq.(6)

{mt+1
1 , . . . ,mt+1

N } ← {ϕt+1 ◦ ht+1
1 , . . . , ϕt+1 ◦ ht+1

N } // according to Eq.(7)
end

ClientUpdate(mi):
Initialize client model with mi

mi ← SGD(Di,mi)
return mi to the center server

testing, and the remaining training data is distributed using a Dirichlet distribu-
tion [23] with β = 5.0; NIID-2 (Figure 3-c) includes the Matek-19, Acevedo-20,
and Bodzas-23 datasets, which simulates a more heterogeneous real-world sce-
nario under data heterogeneity and imbalanced label distribution. These datasets
inherently exhibit non-i.i.d. characteristics, including missing classes. For the
training set, each dataset is split into 5 client data distributions, with each client
randomly selecting 5 to 6 categories [28], and the sample size for each category
randomly ranges from 20 to 60. The remaining samples are used for testing.

3.2 Baselines

In this paper, we evaluate seven baselines for comparison, including: (1) Fe-
dAvgM [9], (2) FedAdam [19], (3) FedYogi [19], and (4) FedAdagrad [19],
which are standard FL aggregation algorithms designed to address data hetero-
geneity; (5) FedProx [12], which mitigates heterogeneity challenges during local
training by introducing a proximal term; (6) FedDisco [28] and (7) ISFL [31],
two state-of-the-art methods for heterogeneous federated learning.

3.3 Implementation Details

All the methods are implemented using PyTorch 2.4.1 with four NVIDIA 4090
GPUs. The maximum communication rounds for the server are set to 1500, and
early stopping is supported. To optimize the settings for different data, for the
IID and NIID-2, we set the optimizer to SGD with a learning rate of 1e-4, and
the batch size is set to 32. For the NIID-1, the learning rate is set to 1e-3 and
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(a) IID(10-class) (b) NIID-1(7-class) (c) NIID-2(14-class)

Fig. 3. Data distribution across clients. IID only includes 11,630 training samples,
where all client samples are evenly distributed. NIID-1 contains 9,805 training sam-
ples, exhibiting a significant imbalance in distribution. NIID-2 includes a total of 3,115
training samples, presenting non-i.i.d. issues and imbalanced label distribution.

trained with a batch size of 64. All methods are run five times with different
random seeds and report the average micro-F1 results along with the variance.

3.4 Performance Comparison

Table 1 compares the micro-F1 scores of FL methods across three datasets: IID,
NIID-1, and NIID-2. Under IID conditions, all methods achieve strong perfor-
mance, with FedAvgM scoring 91.97% and FedSDC slightly outperforming it
at 92.01%, underscoring its efficacy in homogeneous data environments. This
aligns with expectations, as uniform data distribution inherently simplifies FL
optimization. In contrast, NIID settings reveal stark performance variations.
For NIID-1, all baselines exhibit significant degradation, with FedSDC scor-
ing 68.76%—highlighting the challenges of client-specific data skew. Notably,
FedSDC+ improves NIID-1 performance to 70.00%, demonstrating the value of
its algorithmic enhancements. Meanwhile, FedSDC regains robustness in NIID-2,
achieving 91.37%, which suggests tailored adjustments can mitigate NIID effects.
Collectively, these results emphasize the necessity of addressing data heterogene-
ity in FL and position FedSDC and its variants as promising frameworks for
medical imaging, where data distributions are often inherently non-uniform.

Figure 4 illustrates the convergence behaviors of FL models across IID, NIID-
1, and NIID-2 settings. In the IID scenario, all models attain rapid convergence to
high micro-F1 scores (>90%), reflecting their suitability for uniform data. Under
NIID-1, however, convergence patterns diverge sharply: FedSDC shows markedly
slower progress, mirroring the performance drop in Table 1, while FedSDC+

achieves steadier improvement. The NIID-2 setting reveals enhanced stability,
with most models converging more smoothly—a trend likely attributable to ar-
chitectural adaptations for heterogeneity. These curves underscore the critical
role of algorithmic resilience in non-i.i.d. FL, particularly in applications like
medical imaging where data variability is pervasive.
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Table 1. Experimental results with the evaluation metric of micro-F1 Score

Method IID(%) NIID-1(%) NIID-2(%)

FedAvgM [9] 91.97 ± 0.26 66.29 ± 1.63 89.52 ± 0.65
FedAdam [19] 90.78 ± 0.21 58.95 ± 1.89 88.52 ± 0.59
FedYogi [19] 90.85 ± 0.36 62.00 ± 2.06 89.15 ± 1.09
FedAdagrad [19] 91.06 ± 0.51 65.24 ± 1.39 88.82 ± 0.51
FedProx [12] 90.96 ± 0.12 63.71 ± 1.63 89.15 ± 1.09
FedDisco [28] 91.95 ± 0.23 65.91 ± 2.64 89.39 ± 0.76
ISFL [31] 91.00 ± 0.24 61.33 ± 1.48 89.18 ± 0.67

FedSDC 92.01 ± 0.26 68.76 ± 0.99 91.37 ± 0.25
FedSDC+ 91.91 ± 0.21 70.00 ± 1.12 91.41 ± 0.25

(a) IID (b) NIID-1 (c) NIID-2

Fig. 4. Convergence curve plots of models under different scenario settings.

3.5 Ablation Study

Table 2 presents the ablation study results conducted in the NIID-1 dataset,
evaluating the performance of the model with various strategies such as Diversity,
Shuffle, and Ensemble. Model M1, which lacks both Diversity and Shuffle, scored
56.67%, indicating limited effectiveness. Introducing the Shuffle feature in Model
M2 leads to a slight improvement to 57.62%. Model M3, incorporating both
Diversity and Shuffle features, achieves a significant enhancement with a score
of 66.29%. Finally, FedSDC obtains the highest micro-F1 score of 68.76% with
the proposed shuffle-diversity collaborative strategy. These results highlight the
importance of training multiple heads under this strategy, which enables the best
performance.

Table 2. Experimental results of the ablation study in NIID-1 scenario

Model Diversity Shuffle micro-F1(%)
M1 56.67±0.96
M2 57.62±1.03
M3 66.29±1.70

FedSDC 68.76±0.99



FedSDC for Imbalanced Medical Image Analysis 9

4 Conclusion

In this paper, we propose a novel generalized federated learning method, namely
FedSDC, designed to address the issue of imbalanced data distribution in medical
image analysis. By synergizing feature sharing (body) with structured hetero-
geneity (heads), our framework overcomes the limitations of conventional aggre-
gation strategies. The introduced sparse head mechanism (FedSDC+) further
reduces computational overhead while preserving ensemble diversity and predic-
tion quality. Experiments on three datasets verify the efficacy of our FedSDC
and FedSDC+.
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